
A Knowledge-based Multi-entity and Cooperative System
Architecture

Manuel Mühlig, Lydia Fischer, Stephan Hasler and Jörg Deigmöller1

Abstract—Future intelligent systems will become more complex
and they will be composed of potentially very different artificial
agents like mobile robots, smart home infrastructure, and smart-
phones that collect data and that have capabilities to perform
certain tasks. The challenges will be that the elements such a
system is composed of will not be known in advance and might
change dynamically. Further, the tasks that need to be fulfilled
will be unknown beforehand and might require cooperation with
humans to make use of their abilities. In this paper we provide
a description of a system with which we try to tackle these
challenges. Our system uses available resources (robots, humans)
and the actual state of the environment to provide a plan in order
to satisfy a given request. We demonstrate the flexibility of our
system through varying the available resources and the state of
the environment. To our knowledge there are few approaches only
that (i) explicitly model and use humans together with intelligent
agents in the same plan in this kind of abstraction level, and (ii)
that have a system using heterogeneous agents at the same time.

I. INTRODUCTION

When looking at the current trend of intelligent systems, we
assume they will become more complex and will be composed
of multiple artificial agents. Those agents are potentially very
different in their form and functionality, such as mobile robots,
static smart home infrastructure, or smartphones. This raises
new challenges that need to be addressed. For example, since
the system elements are likely not known in advance and might
change from user to user or over time, future intelligent systems
need to be dynamic in this respect. Furthermore, these systems
should be embedded in the real world and interact with humans,
which means that human-understandable concepts about the
environment need to be employed [1], [2]. A viable approach
for this is to use semantic knowledge, however with its known
problems towards generalizability and grounding [3]. Besides
that, the designer of such systems will most-likely not consider
all future tasks that ought to be fulfilled. The systems therefore
need to be extendable over time and, even better, cooperate
with humans to compensate for lacking abilities, as for example
already successfully shown in well-defined assembly tasks [4],
[5]. This is a promising way for elevating an assistant system
from a simple tool towards a cooperation partner [6].

In this paper we provide a description of a system with
which we tackle some of the mentioned challenges. We are
targeting at a system that operates in an office environment

1All authors are with the Honda Research Institute Europe
GmbH, Carl-Legien-Strasse 30, 63073, Offenbach/Main, Germany,
{firstname.lastname}@honda-ri.de

and which uses multiple heterogeneous resources like mobile
robots, humans, and smart rooms in order to perform tasks,
such as fetching objects or guiding visitors. As a testbed, we
have implemented the so-called Living Lab as part of our
normal office workspace. A part of the office space has been
equipped with cameras and other sensors, mobile robots can
navigate around, and a smart room, the Smart Lobby, has
been installed. In this setting, we demonstrate the flexibility
of our system by varying the available resources (robots and
persons) and the state of the environment. To our knowledge
there are only few approaches that (i) explicitly model and use
humans together with intelligent agents in the same plan in
this kind of abstraction level, and (ii) that have a system using
heterogeneous agents at the same time.

The key features of the presented system are:
1) a centralized system architecture that allows for dynamic

registration of heterogeneous entities.
2) a shared knowledge representation including semantic and

model information.
3) the automatic generation of multi-entity planning problems

given the capabilities of the registered entities.
4) the explicit modelling of persons as part of the system

and their involvement in achieving goals.
5) methods for providing explanations of the system’s be-

havior by the system itself.
The paper is organized as follows. The next section embeds

our work in the literature. Then, Section III provides a brief
review of the overall architecture. The main parts of the system,
entity management, knowledge organization, and multi-entity
planning are explained in detail in sections IV, V, and VI,
respectively. Afterwards in Section VII we give an insight into
our experiments and sum up in Section VIII.

II. RELATED WORK

There are multiple related publications in the domain of
service robot architectures that are relevant for this work.
For example, the CMU Snackbot project [7] implemented an
autonomous, interactive, service robot for snack delivery in an
office space targeted at long-term operation. Also, the authors
of [8] showed a service robot system that focussed on longer
operation and on asking humans for help. An aspect very
relevant to this paper as can be seen in later sections. A larger
effort has also been conducted within the STRANDS project [9].
The single robot architecture has been proven to be stable over
a long time, pursuing service tasks in interaction with naive
people. Parts of their methods have been reused for the mobile
robots presented in this paper, although in a new scope within
our multi-entity architecture.978-1-7281-5871-6/20/$31.00 c©2020 IEEE

knowledge exchange
task execution

registration at backend

Task Planner
Symbolic planning of

multi-entity task

Request Manager
Handling requests that

require action

Knowledge Manager
Interface for storing/retrieving

semantic and object data

Entity Manager
Coordinates dynamic registration

and task distribution

Knowledge Graph
Neo4jStoring semantic

world knowledge

Model Database
Mongo DB

Storing models

Backend

Entities

g
User Receptionist Johnny Smart Lobby Cooperative Human

ask for help

service request

entity
information

PDDL
problem
definition

plan

plan execution

retrieving task-
relevant information

Fig. 1: The system overview shows the backend parts and the entities. The green, orange, and blue parts relate to planning, to storing and accessing the
knowledge of the system, and to the registration of entities and the task distribution of created plans. Entities can be used to ask humans for help.

Since we are targeting at operating in a real office environ-
ment, the present humans need to be considered by the system.
A recent overview over the field of human robot teaming and
the associated challenges can be found in [10]. Also, there is
earlier work considering humans during robots’ actions [11],
where the state of the human (e. g., standing or sitting) is
considered for appropriate motion planning. We are however
trying to more tightly incorporate the humans in the system’s
behavior. As will be explained later in this work, humans
are not seen as uncontrollable constraints, but instead their
capabilities are taken into account and the system might opt
to ask the human for help.

One part of a multi-entity system is the knowledge organi-
zation and distribution amongst the components. This requires
the right abstraction level due to the different sensors and capa-
bilities of the system entities. Semantic representations are an
efficient method to achieve this and a way to make knowledge
gathered by single robots available to other robots [12]. As
presented in [13], this seems feasible in a larger scope by using
a representation that includes knowledge about the environment
as well as past actions of a robot. Semantic representations
also provide different ways of allowing for extendability of
the knowledge under an open-world assumption. On the one
hand, it allows for reasoning over unknowns, for example by
incorporating the concept of hypotheses [14]. On the other
hand, the semantic representation can be connected to external
world knowledge. This has for example been shown in the
KnowRob project [15], where information from sensory data is
associated to predefined ontological information. Furthermore,
in our earlier work, we also showed that such a representation
is well suited for interacting with humans and for generating
human-understandable explanations of a reasoning process [16].

In that previous work, the focus was more on how to represent
knowledge (in particular relations between tools, actions, and
objects) rather than on symbolic planning.

For planning we are building upon traditional AI methods
similar to the work presented in [17]. There, the planning
domain and problem (e. g., a search task in an unknown
environment) is defined using a variant of the Planning Domain
Definition Language (PDDL) and a plan is searched for a
single robot using a combination of deterministic and decision-
theoretic planners. The process is similar in our work, besides
that in our case the planning problem is generated automatically
according to which entities (and persons) are actually available
and which capabilities they have.

III. SYSTEM ARCHITECTURE OVERVIEW

Figure 1 provides an overview of the components of the
presented system. It is implemented as a centralized architecture
separated into a backend and the entities that it controls. The
term entities in this context is not restricted to robots, but also
includes smart infrastructure, such as the depicted Smart Lobby.
The later Section VI also describes how humans can be seen as
part of this system in form of entities that cannot be controlled
directly. Entities themselves do not communicate among each
other, but only with two backend components. Firstly, the Entity
Manager, which allows for entities to register at the system
and for the backend to assume control of them. Secondly,
the Knowledge Manager, which coordinates the storage of
sensory information received from the entities and allows
other components to query this information via a common
interface. For actually performing a function that utilizes the
registered entities, the Request Manager receives the desired
goal from a user. It then queries information relevant for
the planning problem using the Knowledge Manager, such

as the registered entities, their location and capabilities, and
the task-relevant subset of the measured world state. This
information is used to generate a sequential plan that is then
executed via the Entity Manager. The system and the entities
are implemented using ROS with multiple ROS masters to
increase robustness wrt. wireless communication outage (based
partially on the multimaster fkie package). The subsequent
three sections provide more details on the entity coordination,
the knowledge representation, and the multi-entity planning,
respectively.

IV. ENTITY MANAGER AND HETEROGENEOUS ENTITIES

The system can be composed of multiple heterogeneous
entities that can register and unregister themselves at the Entity
Manager during runtime. For the initial registration, a UUID
(Universally Unique Identifier) is being generated to identify
the entity for and to be used for later re-registrations. Since
the entity is formerly unknown to the system, it fully describes
itself during the registration process. This information is stored
in the Knowledge Graph and used later for generating plans that
involve the respective entity. Entities are defined by following
properties:

1) A State Model with the two modes Autonomous and
Controlled. In the autonomous mode, the entity is known
to the backend, but cannot execute a requested command.
It is allowed to follow its own autonomous behavior, for
example a mobile robot patrolling and interacting with
people. In the controlled mode, the entity is part of a larger
plan and thus not allowed to perform autonomous actions
that could interfere with it. A safe switching between the
autonomous and controlled mode has to be implemented
for each entity specifically.

2) Entities have Capabilities, which are basically
parametrized actions that the backend can execute
with the entity. For example, changing the location of the
entity or picking up an object are such capabilities. The
Entity Manager can request the execution of an entity’s
capability only while it is in controlled mode.

3) Sensors are the different types of information the entity
continuously provides to the backend. The term can refer
to actual sensor data or to virtual (e. g., post-processed)
data. For example the battery state and the pose of our
mobile robots are sensors, but also is the information
about spontaneously recognized persons.

4) Finally, all entities have a Location, which is described
by a reference frame and a static (e. g., fixed camera) or
dynamic (e. g., mobile robot) transformation.

After registration, an alive signal is being sent regularly to the
Entity Manager in order to detect communication outages.

As can be seen from the description above, it is generally
assumed that entities have an autonomous operation mode. This
means, robots can autonomously move through the office space
in our Living Lab environment. During this phase an interaction
can be triggered via a wakeup word and this interaction can
lead to a request to the backend system. If however the robot

Fig. 2: Mobile robot Johnny during object hand over in the Smart Lobby

is in controlled mode it does not move autonomously and does
not react to its wakeup word.

The following is an overview of the entities in our Living
Lab environment. Note that only the capabilities relevant for
the experiments in Section VII are mentioned here.

Mobile robots: We are using three mobile robots based
on MetraLabs’ SCITOS G5. It is additionally equipped with
a Kinect camera mounted on a Schunk PW70 pan-tilt-unit
for moving the head. The camera is encased in a custom
head design. Laser scanners in the front and rear allow the
robot to localize itself in the room and a Kinova JACO 2 arm
enables the robot to transport objects. These robots have the
capabilities ‘move to location’, and ‘inform person’. They are
equipped with sensors measuring their own pose and measuring
faces (recognizing persons) in a certain range. Figure 2 shows
the mobile robot during the hand over of an object in the
experiment described in Section VII. For more details on the
robots’ capabilities we refer to [18] where they have been used
for interactive object learning.

Smart Lobby: The Smart Lobby [19], [20] is a room
equipped with various sensors, such as Kinect cameras, mi-
crophone arrays, and touch interfaces (see Fig. 2). It contains
three main screens for visualizing information or interacting
with persons. One big screen on a wall is used for visualization
purposes as well as for displaying a virtual avatar that represents
this entity. Additionally there are two screens in the table where
one of it can be used for touch interaction. The Smart Lobby
can detect faces and therefore persons within the room and
has the capability ‘inform person’.

Receptionist: The Living Lab includes a stationary com-
puter showing the same avatar as the Smart Lobby. The
computer screen is equipped with a camera and microphones
and is used for introducing new persons to the system. After
the introduction process, the information about the person,
including name and face recognition model, is then stored in
the system’s knowledge representation. The Receptionist is not
used during the experiment in Section VII and only mentioned
here for completeness.

Persons: Persons are agents that do not register at the
system. However they share semantic properties with entities

and are used by the planner (described in Section VI) as such.
Persons are assumed to have all capabilities the system knows
of. This assures an open-ended behavior of the system in case
of requests that cannot be matched by any registered entity. One
difference to normal entities however is that persons cannot
be controlled directly by the Entity Manager. They need to
be asked for support (i. e., executing a specific capability) by
another entity.

V. KNOWLEDGE REPRESENTATION

The main purpose of the knowledge representation is to
provide a central location for acquired information and make
the information globally accessible to all registered entities.
The knowledge representation has two elements, a Knowledge
Graph and a Model Database (see orange parts in Figure 1).
The Knowledge Manager organizes the access to the databases.
All three components are now described in more detail.

Knowledge Manager: The Knowledge Manager directs
requests to the suited underlying database. To separate huge
amount of binary or well structured data from semantic, more
abstract data, two databases are used. The Model Database
stores data of the first type and the Knowledge Graph stores
semantic data.

Model Database: The content of the Model Database are
learned features of the face recognition. If a person is learned
by an entity, the Model Database is updated and the features
are synchronized with all currently registered entities. This
ensures that a person learned by a single entity can later be
recognized by any other entity. Simultaneously, every added
person is also inserted in the Knowledge Graph as new instance
of a person concept (see next paragraph). After a successful
insertion, the Knowledge Graph returns a UUID that is used
for indexing the features in the Model Database. Hence, the
Model Database has no information about properties of persons
(e. g., their names), but just the learned features indexed by
UUIDs. Note, the Knowledge Graph has no information about
visual features of a person’s face but it contains all semantic
information. Both types of information are coupled by the
UUID.

Knowledge Graph: The Knowledge Graph consists of
two parts. The first part is Memory Net [21], which defines
the graph structure and an API for accessing the structure.
The second part is an underlying Neo4j graph database. The
Memory Net API provides the following functions:

• insert/update information (e. g., measurements or states)
obtained from entities

• retrieve information about the state of the environment
• provide basic reasoning (e. g., spatial and temporal rea-

soning)
The graph structure of a Memory Net consists of concepts
with properties defined as a property graph [22]. Concepts are
sub-graphs and properties are quantities in the physical world
that describe a concept. Concepts and properties defined in
this work are:

• concepts: room, object, person, passage, entity, capability,
measurement, and event

• properties: shape, utterance, and position
Capability concepts are special, since they can be linked to an
executable high level action of a robot. Names of persons or
entities are described by utterance properties and their location
is specified with the position property. A room is described
by its shape, position, name (utterance) and its connections to
other rooms (passages).

An entity can provide measurements of its environment
like detected persons or its own position. Such measurements
are updated continuously in the graph and they link the raw
data, the observer (entity), and properties of any concept
extracted from these measurements. Note, all nodes have
timestamps indicating when they have been created or modified.
A timestamp usually contains the time when a measurement
has been acquired by a sensor. If no sensor timestamp exists,
the time when the measurement is inserted into the knowledge
graph is used.

VI. PLANNING AND RE-PLANNING

The main purpose of the system is to offer services to users
by exploiting the collected observations and flexibly combining
the available capabilities. For this we treat a service request as
a planning problem that we represent in PDDL [23, 2.1 level
2] and that we solve using a standard symbolic planner. In
general PDDL requires to define three aspects: (i) An initial
state: This is a set of facts that is dynamically queried from
the Knowledge Graph, including e. g. information about which
rooms are connected, which entities are active, and in which
room objects/persons/entities have been observed lately. (ii) A
goal state: This is a set of desired facts, which is inferred from
the interaction with the user, e. g. an object/information should
be given to a person, or a person should be brought to another
person or into a certain room. (iii) The actions: This is a set of
rules that describe under which conditions a capability can be
executed and what is the resulting change in state/facts. Each
action is associated with a cost.

Based on this problem definition the Metric-FF [24]
planner is used to find the cost-optimal sequence of ac-
tions that fulfill the goal state. For a goal state of
person_at paul library a possible plan can be:

1) entity_change_room johnny hallway kitchen
execute: move(where=“kitchen”) on “johnny”

2) entity_invoke_person johnny paul kitchen
execute: inform(who=“paul”, what=“Go to the library!”)
on “johnny”

3) person_change_room paul kitchen library
assume: “paul” moves to “library”

In each step the first token is the action name which is
directly mapped to a capability. The second token is the agent
that should perform the capability, and the remaining tokens
contain the required parameters of the capability. If the agent is
an entity (step 1), the backend can directly ask it to execute the
capability remotely, e. g. to move somewhere. If a human agent
should perform an action (step 3), beforehand the backend has
to use an entity to tell the human what to do (step 2). The
given instruction (parameter what) is dynamically aggregated
from the following actions that involve this person.

The costs for an action mainly depend on the involved agents.
Entities should be preferred whenever possible. Therefore they
are associated with a low cost. Persons have a cost that is
between one and two orders of magnitude higher. The value
increases with the age of the last observation of the person. This
favors recently seen persons and thus increases the probability
of a successful plan execution. Besides using the age of the
last observation, currently no other means of representing
uncertainty about the current state are considered.

An important aspect for acceptance of the system is that
humans in the Living Lab can intuitively understand what the
system and each entity is currently doing. When the backend
receives a service request it uses the Smart Lobby to express
the desired goal state, if a plan was found, and which agents
are involved in the plan. During plan execution, for each step
an explanation is shown and potential errors are expressed.
Furthermore, each entity explains which capability it is about
to perform if this is not evident inherently. For instance, before a
robot starts moving it will tell to which room it wants to go and
shows this information on its screen. All explanations are given
in natural language, which requires to generate sentences from
symbolic information and to have a dedicated error message
policy.

A capability can fail due to a technical problem (e. g., a
component crashes) or due to a wrongly assumed fact (e. g., a
person is not in the room, where it was before). In both cases
the plan will be aborted but the system can potentially find a
new plan by selecting an alternative capability/entity or person.
Currently we only consider the latter case. For instance, if a
person is not found in a room this is stored as a special event
in the Knowledge Graph. As a consequence the person is no
longer assumed to be in that room, when the initial state is
queried again.

The complexity of the planning problem heavily depends on
the number of rooms, objects, agents and actions. The planner
usually finds a solution within few seconds if it exists. After
10 seconds the planner is aborted, assuming that it is too time-
consuming or impossible to find a cost-optimal solution. In
such a case the planner could be restarted with parameters that
put less focus on a cost-optimal solution. Though correct, this
results in sometimes funny, but usually long and tedious plans.
Thus this is not done in the running system.

VII. EXPERIMENTS

In the experiments we demonstrate the flexibility of our
system. We describe different settings of the environment
whereas the goal state of the task stays the same.

For the experiments the area of the Smart Lobby and an
office is used. Involved entities are the Smart Lobby and the
mobile robot Johnny. As explained, persons are modelled in
the system and can be invoked in the execution of plans.

The basic story is that Paul wants to have an object (the
key) that is stored in the office. Therefore the goal state for
all experiments is person_has Paul key. The speciality
of the object is that only dedicated persons have access to the
object storage. In our case this special person is Lisa.

Figure 3 shows the different environment settings. In all
settings the Smart Lobby (,) is available, the key’s (¤)
location is in the office, and Paul’s (P) location is in the
Smart Lobby. In setting (a) and (b), Johnny (-) is available.
In setting (a) and (d), Lisa’s (L) location is in the office, while
in setting (b) and (c) she is located in the Smart Lobby.

¤

,
-

P

L

¤

,
-

P
L

¤

,

P
L

¤

,

P

L

(a) (b) (c) (d)

Fig. 3: Settings for the experiment. The position of Lisa and the availability
of Johnny differ. The white area is the office and the other area is the Smart
Lobby. P Paul; LLisa; , Smart Lobby; - Johnny; ¤ key

The system creates for each setting a plan which is shown
in Fig. 4.1 to Fig. 4.4. If an entity is informing a person, there
will be symbols (*/#) linking to the spoken text in Fig. 4.5.

0. Request control of entities
1. Backend invokes Johnny
2. Johnny moves to the office
3. Johnny invokes Lisa: ***
4. Lisa fetches the key
5. Lisa gives the key to Johnny: **
6. Johnny moves to the Smart

Lobby
7. Johnny gives the key to Paul: *
8. Release control of entities

Fig. 4.1: Plan setting (a)

0. Request control of entities
1. Backend invokes Johnny
2. Johnny invokes Lisa: #
3. Lisa moves to the office
4. Lisa fetches the key
5. Johnny moves to the office
6. Lisa gives the key to Johnny: **
7. Johnny moves to the Smart Lobby
8. Johnny gives the key to Paul: *
9. Release control of entities

Fig. 4.2: Plan setting (b)

0. Request control of entities
1. Backend invokes Smart Lobby
2. Smart Lobby invokes Lisa ###
3. Lisa moves to the office
4. Lisa fetches the key
5. Lisa moves to the Smart Lobby
6. Lisa gives the key to Paul
7. Release control of entities

Fig. 4.3: Plan setting (c)

0. Request control of entities
1. Backend invokes Smart Lobby
2. Smart Lobby invokes Paul: ##
3. Paul moves to the office
4. Paul takes guidance of Lisa
5. Paul, Lisa move to the Smart Lobby
6. Paul releases guidance of Lisa
7. Smart Lobby invokes Lisa: ###
8. Lisa moves to the office
9. Lisa fetches the key

10. Lisa moves to the Smart Lobby
11. Lisa gives the key to Paul
12. Release control of entities

Fig. 4.4: Plan setting (d)

*** “Please fetch the key and give the key to me and press the
acknowledge button!”

** “Please give the key to me and press the acknowledge button!”
* “Please take the key!”
“Please go to the office and fetch the key and give the key to me and

press the acknowledge button!”’
“Please go to the office and bring Lisa to the Smart Lobby!”

“Please go to the office and fetch the key and go to the Smart Lobby
and give the key to Paul!”

Fig. 4.5: Information texts

In setting (a) the plan (Fig. 4.1) is straight forward. The
system sends Johnny into the office (asking Paul would lead
to much higher costs for the plan) and lets it ask for the key.
Since Lisa is assumed to be at the office, she is assumed to
fetch the key and to give it to Johnny. After receiving the key
(checked by the usage of the acknowledge button), Johnny
returns to the Smart Lobby. Then the key is given to Paul,
which satisfies the goal state.

In setting (b, Fig. 4.2) all agents are in the Smart Lobby.
The system lets Johnny inform Lisa to move to the office
for picking up the key. Johnny moves to the office too and
waits for receiving the key from Lisa. Then, Johnny moves
back to the Smart Lobby and gives the key to Paul which
satisfies the goal state. The number of tasks for Lisa is kept to
a minimum, because otherwise it would increase the costs of
the plan significantly. An equal plan in terms of costs could
also involve the Smart Lobby entity for informing Lisa.

In setting (c, Fig. 4.3) all persons are in the Smart Lobby
and Johnny is unavailable. Since Lisa is the only person with
access to the key she is directly asked by the Smart Lobby to
move to the office, to fetch the key, and to bring it back to
Paul. If this happens as expected the goal state is fulfilled.

In setting (d) the static Smart Lobby is the only available
entity again and the system executes the plan of Fig. 4.4. Since
Paul is the only person in reach for the system, he is asked
to guide Lisa into the Smart Lobby. Therefore he needs to go
into the office where Lisa is supposed to be and pick her up.
This seems to be strange but the aim of the system to interact
directly with Lisa in order to ask her for the key. So far we
did not model any mechanism that allows persons to inform
other persons about something which would be an alternative
to the current plan. When Lisa enters the Smart Lobby she
will be informed (###) to fetch the belt and to give it to Paul,
which again satisfies the goal state.

VIII. CONCLUSION

In this paper we presented a system architecture for a
multi-entity intelligent system. It mainly focuses on flexibility
in different aspects to allow for a robust task achievement.
First, the system allows for dynamic registration of previ-
ously unknown entities with different capabilities. Second,
humans are considered as part of the system by assuming
their capabilities and planning with them. Third, planning
problems are dynamically generated based on which entities
are registered, what capabilities they have, and the relevant
state of the environment. As shown with the experiments in
Section VII, these aspects together allow for achieving tasks
in different situations.

As for all such systems as presented in this paper there
are loose ends that allow for improvement in future work.
This includes improving the planning method towards allowing
for parallel execution of capabilities as well as considering
uncertainty information. Furthermore, the usage of the seman-
tic knowledge representation would allow for incorporating
external world knowledge and more sophisticated reasoning
processes. And finally, the system is to be evaluated during
long-term operation in our Living Lab.

REFERENCES

[1] S. Rebhan, N. Einecke, and J. Eggert, “Consistent modeling of functional
dependencies along with world knowledge,” in Proceedings of the
International Conference on Cognitive Information Systems Engineering,
2009, pp. 341–348.

[2] S. Rebhan, A. Richter, and J. Eggert, “Demand-driven visual information
acquisition,” in Computer Vision Systems, 7th International Conference
on Computer Vision Systems, ICVS, 2009, pp. 124–133.

[3] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear
Phenomena, vol. 42, no. 1, pp. 335–346, 1990.

[4] N. Nikolakis, N. Kousi, G. Michalos, and S. Makris, “Dynamic scheduling
of shared human-robot manufacturing operations,” Procedia CIRP,
vol. 72, pp. 9–14, 2018.

[5] N. Nikolakis, K. Sipsas, P. Tsarouchi, and S. Makris, “On a shared
human-robot task scheduling and online re-scheduling,” Procedia CIRP,
vol. 78, pp. 237–242, 2018.

[6] M. Krüger, C. B. Wiebel, and H. Wersing, “From tools towards cooper-
ative assistants,” in Proceedings of the 5th International Conference on
Human Agent Interaction. ACM, 2017, pp. 287–294.

[7] M. K. Lee, J. Forlizzi, P. E. Rybski, F. Crabbe, W. Chung, J. Finkle,
E. Glaser, and S. Kiesler, “The snackbot: documenting the design of a
robot for long-term human-robot interaction,” in Proceedings of the 4th
ACM/IEEE international conference on Human robot interaction. ACM,
2009, pp. 7–14.

[8] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal mobile
robot agent through symbiotic human-robot interaction,” in International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2010), vol. 1, May 2010, pp. 915–922.

[9] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrová,
J. Young, J. Wyatt, D. Hebesberger, T. Koertner, R. Ambrus, N. Bore,
J. Folkesson, P. Jensfelt, L. Beyer, A. Hermans, B. Leibe, A. Aldoma,
T. F., and M. Hanheide, “The STRANDS project: Long-term autonomy
in everyday environments,” IEEE Robotics & Automation Magazine,
vol. PP, 04 2016.

[10] T. Chakraborti, S. Kambhampati, M. Scheutz, and Y. Zhang,
“AI challenges in human-robot cognitive teaming,” CoRR, vol.
abs/1707.04775, 2017.

[11] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, “Toward
human-aware robot task planning.” in AAAI spring symposium: to boldly
go where no human-robot team has gone before, 2006, pp. 39–46.

[12] E. Tosello, Z. Fan, and E. Pagello, “A semantic knowledge base for
cognitive robotics manipulation,” University of Padova, 2016.

[13] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula,
“Robobrain: Large-scale knowledge engine for robots,” CoRR, vol.
abs/1412.0691, 2014.

[14] Y. Jiang, N. Walker, J. W. Hart, and P. Stone, “Open-world reasoning
for service robots,” in International Conference on Automated Planning
and Scheduling,, 2019, pp. 725–733.

[15] M. Tenorth and M. Beetz, “KnowRob: A knowledge processing infras-
tructure for cognition-enabled robots,” International Journal of Robotic
Research, vol. 32-5, pp. 566–590, 2013.

[16] L. Fischer, S. Hasler, J. Deigmöller, T. Schnürer, M. Redert, U. Pluntke,
K. Nagel, C. Senzel, J. Ploennigs, A. Richter, and J. Eggert, “Which
tool to use? Grounded reasoning in everyday environments with assistant
robots.” in CogRob@ KR, 2018, pp. 3–10.

[17] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö,
A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, et al.,
“Robot task planning and explanation in open and uncertain worlds,”
Artificial Intelligence, vol. 247, pp. 119–150, 2017.

[18] S. Hasler, J. Kreger, and U. Bauer-Wersing, “Interactive incremental
online learning of objects onboard of a cooperative autonomous mobile
robot,” in International Conference on Neural Information Processing.
Springer, 2018, pp. 279–290.

[19] S. Fuchs, N. Einecke, and F. Eisele, “Smartlobby: Using a 24/7 remote
head-eye-tracking for content personalization.” in UbiComp, 2019, p.
accepted.

[20] S. Fuchs, N. Einecke, M. Mühlig, B. Bolder, and F. Eisele, “Smartlobby:
A 24/7 human-machine-interaction space within an office environment.” in
European Conference on Ambient Intelligence (AmI), 2019, p. accepted.

[21] J. Eggert, J. Deigmöller, L. Fischer, and A. Richter, “Memory Nets:
A knowledge representation for autonomous entities.” in International
Conference on Knowledge Engineering and Ontology Development,
2019, p. accepted.

[22] R. Angles, “The property graph database model,” in AMW, ser. CEUR
Workshop Proceedings, vol. 2100. CEUR-WS.org, 2018.

[23] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[24] J. Hoffmann, “The Metric-FF planning system: Translating “ignoring
delete lists” to numeric state variables,” Journal of artificial intelligence
research, vol. 20, pp. 291–341, 2003.

