
Learning the Consequences of Actions:
Representing Effects as Feature Changes

Mathias Rudolph Manuel Mühlig Michael Gienger Hans-Joachim Böhme

Abstract— In advanced Programming by Demonstration (PbD)
it is important to give a robot the ability to understand the
effects of an action. This ability can enable a robot to not
only mimic an action but to imitate, by determining whether
an action succeeded or not, or to emulate, by finding another
action that causes the same effects as observed. In this paper we
propose a system that uses a Bayesian Network structure to store
actions as a representation of their effects. The effects in turn
are implicitly stored as representation of feature changes in the
perceived environment. In a more general form the system can be
used to differentiate between actions. In a more specific form it
can be used to learn complex mapping functions. We will show
three different experiments. The first one shows how to learn
actions as a representation of effects. The second one shows how
our system can be used to learn a complex mapping function on
robot movement and in the third experiment, we illustrate how
to combine these independently learned systems to achieve more
complex tasks.

I. INTRODUCTION

Programming by Demonstration (PbD) is an intuitive way
to teach new movement skills to a robot. A common view
[1] on such approaches classifies them into three increasingly
powerful approaches: mimicry, imitation and emulation. The
main difference between a robot that is able to mimic and a
robot that is able to imitate is the ability to determine whether
an action succeeded or not. Given the according effect is
observable by the robot, this can be achieved by determining
if an action has caused the expected effect. To equip a robot
with the ability to emulate, it is additionally necessary to give
the robot the ability to achieve an effect by different means
than the observed ones. This can be done by using actions
from the robots repertoire that cause a similar or equal effect
as the observed action.

We propose a system that uses Bayesian Networks (BN) to
represent actions and their associated effects. After the BN is
trained, its probabilistic representation can be used to calculate
if an action succeeded. To do that, the action to be executed
and its parameters are used to calculate the probable effect
the action would have. This result is then compared to the
actual observed result after the action was executed. Greater
dissimilarities between the real and calculated results can be
a hint for a failure. This method serves to achieve imitation in

M. Rudolph and H.-J. Böhme are with the Faculty of Mathematics and
Computer Science, University of Applied Sciences Dresden, 01069 Dresden,
Germany

M. Mühlig and M. Gienger are with the Honda Research Institute Europe,
Carl-Legien-Strasse 30, 63073 Offenbach/Main, Germany.

M. Mühlig is with the Research Institute for Cognition and Robotics,
Bielefeld University, 33594 Bielefeld, Germany.

PbD. An similar approach can be taken to achieve emulation:
Instead of calculating the effect, the observed effect is used to
infer an action from the robots repertoire that will, according
to the BN, create a similar effect.

Allowing a robot to imitate or emulate is only the first step.
The next step is to enable the robot to plan. The ability to plan
helps to solve complex tasks that depend on the understanding
of the task’s purpose. When the target is clear, an individual
can combine a number of single actions to a sequence in order
to solve the task. This is commonly known as planing. To be
able to plan, the agent must predict what the outcome of a
specific action will be. And so it must for imitation (e.g.: When
I turn the switch, the light will go on). A planning algorithm
will combine a number of actions into a sequence to solve
the task at hand. In the sequence, the result of the previous
action is the initial state of the next action. The result of the
last action in the sequence is equal to the result of the task.

To show the capabilities of our system in simulation, we
present three experiments. In the first experiment our system
is used to learn the rules of a simple game. Ten cans are used
to create a pyramid. Then a ball is thrown at a certain point
of the pyramid. The system is trained to predict the result (i.e.
number of cans thrown off) of this throw. It is able to infer the
outcome for different configurations of the can pyramid and
different hit points. In the second experiment an agent throws
a ball towards a target point on a wall. The agent has a rather
coarse knowledge of how to throw the ball, so that the ball will
hit another point. The system will then learn to associate target
and actual hit points, which corresponds to a model for the
prediction error of this skill. To represent the action, the throw
parameters (coordinates of target and hit point) are stored.
This experiment will show that using a probabilistic system,
like the BN, is a powerful approach for systems that cannot
be modeled accurately. The third experiment will combine
the independently trained BN from experiment one and two
to a task sequence to show how our system can solve more
complex tasks. The inference result from system one is used
as input for system two.

The organization of the paper is as follows. Related work is
discussed in Section II. In Section III the approach in general
is introduced. The system is used in Section IV to solve the
experiment tasks. Finally in Section V a summary of the results
is given.

II. RELATED WORK

Programing by Demonstration is a promising approach to
equip a robot with actions. It was introduced in [2] by Cypher
et al. in the early 1980s. Instead of depending on actions im-
plemented during the development phase, actions are acquired
online during a robot’s operation. This allows to dynamically
enhance the pool of actions by learning new ones, for instance
when the system encounters novel situations. A large difficulty
however is the implementation of this approach. An interesting
survey about the state of the art on different fields in PbD was
done by Argall et al. in [3].

One of the different topics in PbD and the focus of this
paper is, how to represent the knowledge. In [4] Montesano et
al. state that affordance can be described as a relation between
actions, effects and objects. They use a Bayesian network
to represent this relation. Objects are described by different
attributes: size (i.e. small, medium, large), shape (i.e. sphere
or box) and color (i.e. blue, yellow, green). The objects can be
manipulated using one of the three actions: grasping, touching
or tapping. To train the network, objects and actions are
combined randomly and the effects are observed. The observed
effects are the contact duration between the end-effector and
the object, the end-effector velocity and the object velocity.
Each attribute and effect and the action are represented with
an own node within the network. The relation of the nodes is
represented with the edges in the BN.

Bohg et al. present a vision system in [5]. It includes
a reasoning system that supports the grasping process in
finding the right grasp. This reasoning system is based on
the aforementioned approach by Montesano at al. [4]. Bohg
extend the system using additional nodes for the context (i.e.
environment, task, embodiment) and the cause (i.e. action
failure cause). The context is connected to the nodes for
objects, actions and effects and the cause is connected only to
the effects.

Chella et al. in [6] and Dindo and Infantino in [7] present
a Cognitive Framework that uses three different subsystems
to learn movements and to generate action plans. The Sub-
conceptual Area is used to acquire and process the low-
level visual data. The Conceptual Area is used to encode
and descripe the scene in different spaces. In the Linguistic
Area a high-level symbolic language is used for representation
and processing. The symbols in the linguistic are mapped to
appropriate representations of the spaces in the conceptual
area.

Toussaint et al. use a probabilistic approach to control a
robotic arm in [8]. After they already presented approaches
for probabilistic low- and high-level motor control, they show
that their approaches not only work in simulated environments
but also in real-world scenarios.

In [9] and [10] Mühlig et al. show an approach to represent
the movement of an action using Gaussian Mixture Models.

Most of the systems that somehow concentrate on features,
effects and actions are used to learn object affordances.
The term affordance was first introduced by Gibson in [11].

Gibson used the term to describe the interaction ability the
environment is providing to an individual, depending on the
individual’s action capabilities and perception. A computer
mouse can for instance provide a human with the ability to
control a computer; but it can also be used to be thrown
somewhere. A primate would probably only perceive the
throwing capability.

Kozima et al. [12] propose a system inspired by the mirror
system that allows a robot to emulate actions. They state that
an action is the manipulation executed with a body movement
to produce an effect when applied to an object. It is also
proposed that “For the same or similar object o and for the
same or similar effect e, there will be a number of different
actions a1,a2,...”. Therefore, when a robot has explored a set
of actions it can emulate an observed action by using one of
its own actions that produce the same or similar effect on the
given object.

III. SYSTEM DESCRIPTION

Our system is inspired by the approach of Montesano et
al. [4] who uses a Bayesian network to model the relation
between objects, effects and actions. Montesano et al. uses a
fixed set of effects, each effect is represented as a discrete
node in their network. In our approach we choose to represent
the effect implicitly. An effect is the change of one or more
features caused by an action. Also, sometimes an effect is not
only dependent on one feature but also on other features. It is
easier to represent such a multidimensional effect implicitly.

We assume that an action covers a short finite period of time.
This means there is a point in time where a set of features
represent a scene before an action was executed (i.e. initial
state) and after that a set of features that represent a scene
when the manipulating ended (i.e. end state). The difference
of the features between both states encode the actual feature
change. This is only true when the granularity of the action
is high enough to exclude any sub goals during the execution
of the action.

To account for the two states we use two nodes per feature
to represent their changes. One node stores the values of the
initial state and the other stores the values of the end state.
Because usually a set of features is used, this creates a row
of nodes that represent the initial state and another row that
represent the end state. The effects itself are represented by
the connection between the nodes. To allow the system to
potentially learn all possible effects, each node that represents
an initial state of a feature is connected to all nodes that
represent an end state. The nodes use normal or multivariate
Gaussian Distributions to store the feature values.

We differentiate between three types of features. (i) Object-
features directly describe an object of the observed scene and
can hold properties like color, size, weight or visibility. (ii)
Meta-features are features that depend on a set of object-
features from different objects. An example for meta-features
is the distance between objects. The distance is calculated with
the absolute difference between the position of two objects.
(iii) World-features describe features that do not describe

...

...

featuresactions

action tinit

tend

feature1 feature2 featureN

feature1 feature2 featureN

Fig. 1. The general structure to represent actions, objects and effects.

properties of objects but properties of the perceived world in
general. For example the overall lightness of an scene or the
metered humidity. So instead of the term objects (used by
Montesano et al.), we are going to use the term features to
describe both, object-related and object-unrelated features.

Finally the action is represented with one discrete node and
connected to every end-state node to represent the influence
of the action on the features. The resulting BN of these
considerations is shown in Fig. 1 where continuous nodes are
depicted by circles and discrete nodes by squares.

In the current state the system is able to represent actions
using features and effects. This is fine as long as the rep-
resented actions do not vary too much in their respective
features. For example, in a system that is used to represent the
visibility of an object. A node “visible” uses two states, true
and false, to represent the object visibility. On applying the
action “remove“, the feature ”visible“ will change from true
to false. Because this feature has only two values, there will be
two very good distinguishable value clusters. Another system
is used to represent the position of a ball. The executable
action is ”tap the ball“. The force used to tap the ball is
randomly distributed over an interval. That will result in an
equally random distribution in the observed feature ”position“.

When those sample systems are then used to infer data,
the ”remove“-system will do just fine. But when using the
”tap“-system to infer the end position of a ball after it was
tapped with a specific force, the system will return the average
over all end positions regardless of the applied force, thus
resulting in very poor predictions of the ball position. One way
to solve this problem is to introduce parameter bound actions
(e.g. tap with F = 10N , tap with F = 20N ,...). This solves
the problem to the granularity of the discretized parameter, but
not for continuous values. To solve this problem, we choose
the approach to implement an extra continuous node for the
parameter. The node allows to continuously adjust the applied
force, which in turn allows a more accurate inference of the
position when the system is trained properly.

To represent the parameter in a network structure, an ap-
proach with two nodes is chosen. The first node is representing
the actual parameters that can be manipulated. The second
node represents a feature that is directly influenced by the
new parameter. Taking the example of the ”tap“-action, the
parameter is representing the force vector that was used to tap
the ball and the feature node represents the distance the ball
has traveled as a result of the tap.

A more general problem when it comes to Gaussian dis-
tributions is that it is not capable of representing data that is
wide and equally spread over a relative large value interval.
To solve this problem we introduce an additional discrete
node that is equidistantly clustering the parameter value. This
creates defacto a Mixture of Gaussians that can represent
a mapping function. The network is basically learning the
mapping function for each cluster category. This is shown in
the second experiment.

To conduct our experiments, we use a simulation software
that combines Open Scene Graph for displaying objects and
the PhysX engine to calculate the physical aspects. In the
first experiment, called ”can“-experiment, a ball is thrown
point-blank at a pyramid of cans. The correlation between
impact point and fallen off cans is recorded and used to
train the system. In the second experiment, called ”throw“-
experiment, a humanoid robot is simulated using the forward
chain kinematics approach to control its body. The robot
throws a ball. The throwing parameters are captured. The
important information are, the target point (i.e. the point the
robot aims at) and the hit point (i.e. the ball actually hits). The
system is used to learn the mapping function between those
two points.

In detail our discretized parameter approach works as
follows. In the ”throw“-experiment the target point that is
necessary to hit a given hit point is to be inferred. The
hit point is used as evidence to infer the target point using
the probabilistic abilities of the Bayesian network. First the
discrete target point (i.e. category) is inferred. The discrete
target point is the cluster ID-number of the equidistantly
clustered continuous target point. The result is a probability
for each cluster category that states how likely it is that a target
point within the range of the selected cluster will result in a
hit at the asked point. The most probable grid field is taken
and added to the evidence. Only then, the continuous target
point is inferred.

It would be possible to implement the parameter approach
in the existing structure as shown in Fig. 1. The disadvantage
of specializing the network towards the parameter is that it
now lacks in scaling to a greater number of actions. Espe-
cially when dealing with actions that do not use that specific
parameter or parameter feature. The more general network, has
the ability to differentiate between a great number of actions.
Because as long as a feature is observable it should not matter
if it yields any influence on the action or not, the network will
learn the influence and compensate for non-influential features.
The important point is that all feature data is available for all
actions. Data of a parameter is only available when the action
uses that parameter.

The BNs are implemented using Matlab and the Bayesian
Net Toolbox (BNT). The Toolbox is presented by Murphy in
[13]. To train the BNs the BNT provides a parameter learning
function that uses Maximum Likelihood Parameter Estimation
(see [14]) to adjust the weight parameters along the connec-
tion. To infer data, the toolbox provides a implementation
of the Junction Tree (JT) algorithm [15]. The JT algorithm

...

...

featuresactions

action
of

cans

of

cans

can #1

present

can #1

present

can #2

present

can #2

present

can #10

present

can #10

present

t

t + 1

tinit

tend

Fig. 2. The Bayesian network used to store the can throwing results.

reduces the complexity of the BN to allow to compute the
joint probability with less effort.

IV. EXPERIMENTS

A. Can Tossing

The “can”-experiments is created to show our system’s
ability to learn the rules of an unknown system by observing
its behavior upon given actions. Ten cans are stacked up in
a triangular shape each can is 16cm height and 12cm in
diameter. The free space between two cans is 2cm. In the first
step of this experiment all physically possible permutations
of can combinations were explored. 10 cans that possibly can
be in the pyramid or not, allow for 210 = 1024 potential
permutations. But not every of this permutation is physically
possible. Each permutation is simulated and accepted as phys-
ically possible if the stacked cans did not move more then
1cm in any direction within 5 seconds of physical simulation.
This resulted in 108 possible combinations. Then a grid of
195 fields is laid over the cans. In this context we define an
action as the hit of a ball in the center of one of these fields.
Therefore this experiment has 195 actions.

To create samples, each action was executed three times
for three different angles over all of the 108 possible can
permutations. The angles are 30◦, 0◦ and −30◦ around the y-
axis. The different angles are used to determine the influence
of the angles on the resulting can permutation. For each sample
the number of cans before and after the throw is recorded. It
is also recorded which can left its start position (was thrown
off) and which did not. A can is thrown off when it has moved
more than 1cm in z-direction (i.e. up/down), more than 10cm
in x-direction or more than 40cm in y-direction (i.e. left/right).
The ball is thrown with a velocity of 7m

s in x-direction towards
the cans. In the case of throwing the ball with an angle of 30◦

it has an additional velocity of −4m
s in y-direction. In the case

of −30◦ this velocity is 4m
s . In all cases the ball has a weight

of 2kg and hits at the center of the field.
The network to learn the can-throwing rules (Fig. 2) solely

consists of discrete nodes because all features are discrete and
inferring from discrete nodes is faster. In the first experiment,
the system was used to calculate the action that is necessary
to throw a given number of cans starting from any given can
setup in order to evaluate its planing ability. From the 108
possible can combinations the first, the one with no cans, was
left aside. For all other permutations, one action that leaves
the setup unchanged and all actions that somehow change the

x in m

2 0.6 0.3

target plane

(lateral)
projection plane release

projected

target

target plane

(frontal)

0

y in m

z
 i
n

 m

-11

2

target

hit

0

Fig. 3. A sketch of the “Throwing” experiment.

number of cans were calculated. The evidence used to infer
the action are the initial number of cans, their position and the
desired number of cans.

Due to the fact that the whole can-throwing system is almost
deterministic, that the BN uses only discrete nodes and since
calculating the inference in this system is merely reading the
numbers from a (conditional probability) table, it is expected
that the results of the evaluation are very good.

For this evaluation there were 8603 possible combinations.
Those combinations were tested in the simulation using the
exact parameters for throwing the ball at an angle of 0◦.
The BN was only trained with the sample data where the
ball also hit at an angle of 0◦. In about 90 percent of the
cases, the simulation produced the same outcome as the system
predicted. In less then 7 percent the prediction was off by one
can either to many or to little. In about 3 percent it was off
by more than one can. The detailed results are depicted in
Table I where the accuracy is defined with the difference of
the number of cans that were to target and the number of cans
that were actually thrown off. A negative accuracy means that
more cans were thrown off than targeted.

TABLE I
RESULTS FOR THE FIRST EVALUATION ON THE CAN-TOSSING SYSTEM.

accuracy # of cases % of all samples
-3 or less 36 0.41

-2 63 0.73
-1 309 3.59
0 7780 90.43
1 269 3.12
2 113 1.31

3 or more 33 0.38

B. Throwing

A “throwing”-experiment was created to test the ability of
our system to learn the complex mapping function between
target point and hit point. We show that it is possible to learn
a non-linear mapping function between two two-dimensional
continuous values. As mentioned briefly in Section III, we use
a virtual humanoid robot to throw a ball. The robot is placed at
the origin of the simulated environment. The robot is then used
to throw the ball at a target point that is located at the target
plane. The target plane is located 2m in front (i.e. x-direction)
of the robot. The situation is sketched in Fig. 3. The throwing
motion starts at a fixed point and moves the hand holding the
ball straight towards the target point without violating the joint

target

point

hit

point

target

point

parameter

Fig. 4. The Bayesian Network used to store the throwing result. (circles =
continuous, squares = discrete)

limits of the limb. The ball is released 30cm in front of the
robot and continuous its flight towards the target plane with
the velocity it inherited at the release point. Eventually the ball
will cross the target plane. The point where the ball crosses the
plane is defined as the hit point. The target point lies within
an area on the target plane. This area is 2m in height and
width and its center is aligned with the robot’s center. 30.000
samples were created throwing the ball using randomly chosen
target points and recording the hit point.

The system (Fig. 4) was trained with 29.000 samples,
leaving 1.000 samples for evaluation purpose. Because of the
of the robot’s joint limits, it is not able to actually throw
towards all target points. The restrictions also result in a
non-linear mapping function which is not feasible with only
one Gaussian distribution. As described before, we us an
additional discrete node to cluster the target point and thereby
creating a Mixture of Gaussians to enable the system to cope
with the mapping function. To evaluate the system, the not-
learned sample data is used as evidence to infer the target
point. To infer the target point, first the discrete target point
category is inferred and added to the evidence. In the next
phase, the continuous target point is inferred. Then the data it
is used in the simulation to thrown the ball accordingly. The
result of the throws is then compared to the data from the
evaluation samples and the error, calculated using the RMS-
error. The resulting error in x-direction is about 0.0178m and
in y-direction about 0.0305m.

C. Combining Throwing and Cans

Finally we want to show that both systems can be combined
to work together to simulate a simple planning system. In
this combined system, the result of the “can”-system is used
as input for the “throw”-system. Both systems were trained
independently and to show that they can be combined without
specific adaptation. By combining a number of independent
subsystems, a larger planing system could be created. It is
only necessary to create an additional controlling system that
decides which task to solve. In this example the systems are
used to create a given can configuration.

For this experiment the “can”-network was trained using
the data with an impact angle of −30◦ because these data
seems more similarly to the impact angle of an throw from
the humanoid than the other angles. Still there is no variation
for the angle around the z-axis. Therefore it is expected that
accuracy on the right side of the can pyramid will be better

then on the left side. This is because the robot uses its right
arm to throw the balls and the further the robot aims to the
left the bigger the lateral impact angle will get.

To connect the systems, the inferred action of the “can”
system, which represents a hit point, is taken as point to hit to
the “throw”-system. There it is used to infer the target point.
To evaluate this system, different scenarios were created.

In the first scenario, the system infers actions to throw off
the top three cans of the ten can pyramid. To do so, the system
first tries to find actions that would lead to the desired result
with one throw. If no action is available it creates intermediate
goals by adding cans to the final goal till an action can be
inferred. As described the inferred actions from the “can”-
system are used to infer the target point with the “throw”-
system. The resulting data is then evaluated in the simulation.
The possible result can be (i) a success, (ii) a fail because to
many cans have been thrown off, (iii) a fail because no can
was hit, (iv) the creation of an intermediate state because not
enough cans were thrown off. In the case of (iv) the resulting
can configuration (i.e. intermediate state) is used as new initial
state to infer new actions to reach the target configuration. If
the same intermediate state is generated multiple times during
the whole test, it still is only evaluated once in the simulation.

In this first scenario six actions were created in the first
inference round and were then simulated. In one case each the
throw failed because of (ii) and (iii). In two cases the system
succeeded immediately and in two cases it did not throw off
all cans it should (iv). The two (iv) cases created two different
intermediate states for the second round. In both cases only
one can was left and for both cases seven new actions were
created. From these 14 actions 10 succeeded, two failed with
(ii) and two failed with (iii). The success rate is calculated by
taking the percental share of the cases (i) and adding to it the
share of the cases (iv) multiplied with their success rate, thus
the overall success rate is about 57.13%. The result is summed
up in Table II;

TABLE II
PERFORMANCE OF THE SYSTEM IN THE FIRST SCENARIO.

round 1 2a 2b
cans to throw 3 1 1

actions 6 7 7
success (i) 2 5 6

fail (ii) 1 2 0
fail (iii) 1 0 2

interm. (iv) 1 (to 2a)
1 (to 2b)

success rate 57.13% 71.42% 71.42%

The second scenario is used to compare the accuracy when
throwing at the right and left side of the pyramid. Therefore
the four cans on the right or left flank were to be removed
respectively. First the throwing at the four cans at the right
side, the side directly in front of the robot’s throwing arm,
is evaluated. The results are shown in Table III. To achieve
the target, the system calculated eleven actions. Four throws
created two different intermediate configurations. For the first
intermediate state, twelve new actions were create to remove

one can. The second intermediate state left three cans to be
removed. 29 actions to remove these cans were found. 14
actions lead back to intermediate state 2a and seven actions
created a new intermediate state with two cans left to remove.
The last state spawned 17 actions. The overall success rate is
about 68.57%.

TABLE III
PERFORMANCE OF THE SYSTEM FOR THE FIRST PART OF THE SECOND

SCENARIO.

round 1 2a 2b 3
cans to throw 4 1 3 2

actions 11 12 29 17
success (i) 5 8 0 14

fail (ii) 0 0 1 1
fail (iii) 0 4 7 2

interm. (iv) 3 (to 2a) 14 (to 2a)
1 (to 2b) 7 (to 3)

success rate 68.57% 66.66% 51.65% 82.00%

When throwing at the left side of the pyramid, the success
rate declines. The complete result is displayed in Table IV.
In the first round of inferring actions, eleven actions were
created to throw off the four cans. Four actions created three
new intermediate states with a various number of cans left to
throw. In the third round one last intermediate state is created.
The overall accuracy is about 57.71%.

TABLE IV
PERFORMANCE OF THE SYSTEM FOR THE SECOND PART OF THE SECOND

SCENARIO.

round 1 2a 2b 2c 3
cans to throw 4 3 1 2 2

actions 11 29 36 53 17
success (i) 4 0 14 18 14

fail (ii) 2 2 8 7 1
fail (iii) 1 7 14 10 2

interm. (iv) 1 (to 2a) 14 (to 2b) 18 (to 2a)
1 (to 2b) 6 (to 3)
2 (to 2c)

success rate 57.71% 35.79% 38.88% 47.16% 82.35%

In conclusion of the second evaluation scenario, it is clearly
visible that the lateral angle is influencing the result. As for
the combination of both the “throw”- and the “can”-system,
even though they were trained independently from each other,
both system can be combined to solve the task. The results
are good but not perfect and can probably be improved by
integrating more systemic knowledge.

V. CONCLUSIONS

We have shown an approach to use a BN to store actions
as a representation of their feature changes by using a specific
structure. We have then shown a system that is able to learn
a complex mapping function by incorporation of parameters
of an action. The first part of the system was tested by
learning the correlation between the point where to hit a can
pyramid and the number of cans that fall off. The problem
was rather deterministic due to the use of discrete values and
the repeatability of the physical simulation. After testing the
system, it showed a low prediction error. The error can be

explained by minor deviations in physical simulation. The
parameter network was used to learn the mapping between the
point a simulated humanoid robot has to aim when throwing
a ball and the actual hit point.

Then both systems were combined to throw at the cans using
the simulated robot. Despite the fact that both systems were
designed and trained independently and without adjusting one
system to the other, it showed good results. The combination of
both system shows that a number of such systems, independent
on their specific task, can be used to create a planning system.
Such a system can be used to plan over a number of actions
in order to achieve a certain task.

In the future we want to integrate our parameter network in
our action and feature representing network. To increase the
accuracy of our combined system, different robot positions
and throwing actions should be evaluated. We also we want
to transfer our system to a real robot and adapt it to movement
learning.

VI. ACKNOWLEDGMENTS
M. Rudolph thanks the Honda Research Institute Europe for

the means to accomplish this work.

REFERENCES

[1] C. Breazeal and B. Scassellati, in Imitation in Animals and Artifacts.
MIT Press, 2002, ch. Challenges in Building Robots That Imitate People.

[2] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby,
M. B. A., and A. Turransky, Eds., Watch what I do: programming by
demonstration. Cambridge, MA, USA: MIT Press, 1993.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[4] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, “Learning
object affordances: From sensory motor coordination to imitation,” in
Transactions on Robotics, 2007.

[5] J. Bohg, C. Barck-Holst, K. Huebner, B. Rasolzadeh, M. Ralph, D. Song,
and D. Kragic, “Towards grasp-oriented visual perception for humanoid
robots,” International Journal on Humanoid Robotics, vol. 6, no. 3, pp.
387–434, September 2009.

[6] A. Chella, H. Dindo, and I. Infantino, “A cognitive framework for
imitation learning,” Robotics and Autonomous Systems, vol. 54, pp. 403–
408, 2006.

[7] H. Dindo and I. Infantino, “Representation, recognition and generation
of actions in the context of imitation learning.” in EUROS, ser. Springer
Tracts in Advanced Robotics, H. I. Christensen, Ed., vol. 22. Springer,
2006, pp. 65–77.

[8] M. Toussaint, N. Plath, T. Lang, and N. Jetchev, “Integrated motor
control, planning, grasping and high-level reasoning in a blocks world
using probabilistic inference.” in IEEE International Conference on
Robotics and Automation, 2010.

[9] M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-
level imitation learning using variance-based movement optimization,”
in Proc. IEEE International Conference on Robotics and Automation
(ICRA 2009), 2009.

[10] M. Mühlig, M. Gienger, J. J. Steil, and C. Goerick, “Automatic selection
of task spaces for imitation learning,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems., 2009.

[11] J. J. Gibson, The Theory of Affordances, R. Shaw and J. Bransford, Eds.
Lawrence Erlbaum, 1977.

[12] H. Kozima, C. Nakagawa, and H. Yano, “Emergence of imitation
mediated by objects,” pp. 59–61, 2002.

[13] K. P. Murphy, “The bayes net toolbox for matlab,” October 2001.
[14] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer, 2007, ch. 2, p. 93ff.
[15] C. Huang and A. Darwiche, “Inference in belief networks: A procedural

guide,” International Journal of Approximate Reasoning, vol. 15, no. 3,
pp. 225–263, 1996.

