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Abstract—Multi-robot systems must be able to maintain
performance when robots get delayed during execution. For
mobile robots, one source of delays is congestion. Congestion
occurs when robots deployed in shared physical spaces interact,
as robots present in the same area simultaneously must
manoeuvre to avoid each other. Congestion can adversely
affect navigation performance, and increase the duration of
navigation actions. In this paper, we present a multi-robot
planning framework which utilises learnt probabilistic models
of how congestion affects navigation duration. Central to our
framework is a probabilistic reservation table which summarises
robot plans, capturing the effects of congestion. To plan, we
solve a sequence of single-robot time-varying Markov automata,
where transition probabilities and rates are obtained from the
probabilistic reservation table. We also present an iterative model
refinement procedure for accurately predicting execution-time
robot performance. We evaluate our framework with extensive
experiments on synthetic data and simulated robot behaviour.

Index Terms—Multi-robot systems; Planning under uncer-
tainty; Temporal uncertainty; Formal verification

I. INTRODUCTION

WHEN planning for multi-robot systems under
uncertainty, we wish to obtain resilient robot behaviour.

To attain resilience, the system must be capable of handling
unexpected delays during execution. Delays may stem from
various sources, such as unknown obstacles or adverse weather
conditions. Whilst it is not feasible to model all such sources
a priori, in this work we focus on congestion.

Congestion occurs when multiple mobile robots are trying
to operate in the same part of the environment at the same
time. Congestion can occur in almost any environment a multi-
robot system may be deployed, such as in warehouses [1], fruit
fields [2] and roads [3]. To resolve congestion, robots must ma-
noeuvre to avoid each other. These manoeuvres are often highly
dependent on the precise spatial and temporal situation, and
thus are hard to predict accurately at planning time. Therefore,
congestion increases uncertainty over navigation performance.

Example 1. In Fig. 1, the presence of robots in the same
aisle can cause congestion. If the aisle is wide enough and
there are not many robots, they can manoeuvre around each
other, with this deviation incurring a cost. However, if the

C.Street, N. Hawes and B. Lacerda are with the Oxford Robotics Institute,
University of Oxford, UK, e-mail: {cstreet,nickh,bruno}@robots.ox.ac.uk.
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Fig. 1. A congested warehouse environment with a topological map overlaid.
The circles with arrows show robots in the map. The yellow box marks the
edge whose duration data and distributions are shown in Fig. 3.

aisle is too narrow, or many robots are present, some robots
may have to turn back or wait. In the worst case, robots may
become trapped by the other robots and be unable to move.
Failure to consider this congestion when planning may lead
to suboptimal multi-robot behaviour that diverges significantly
from our expectations of the planned behaviour.

An alternative to modelling the interactions between robots
is to constrain the problem such that these interactions do
not occur. For example, multi-agent path finding (MAPF)
algorithms generate plans that prevent robots from being in
the same location simultaneously [4]. However, since this may
force robots to take conservative routes in order to stay away
from each other, the resulting behaviour may be inefficient.

In this paper we present a novel framework for probabilistic
planning that synthesises efficient robot behaviour by explicitly
modelling congestion. We plan on a topological map, where
navigation actions represent transitions between map nodes. Our
framework reasons about the effects of congestion on navigation
duration, allowing a robot to choose a longer route when shorter
alternatives are likely to present heavy congestion; or select a
slightly congested route that is likely to be quicker than longer,
less congested alternatives. To plan for multi-robot behaviour
under congestion, we model navigation durations as continuous
stochastic processes using phase-type distributions (PTDs) [5].
Though we model congestion, we do not explicitly model
how congestion is resolved, nor the underlying navigation
uncertainty, e.g. from environmental sources. This information
is implicitly represented as uncertainty over navigation
duration, modelled as PTDs that are learned from observations.
By including the learnt PTDs in our planning models we can
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synthesise multi-robot behaviour that is resilient to previously
observed, but not explicitly modelled, sources of delay.

Given a policy describing the navigation route planned for
each robot, we use the corresponding PTDs to construct a
continuous-time Markov chain (CTMC), which allows us to
compute the probabilities of encountering different numbers
of robots (which we refer to as congestion levels) at different
times across the map edges in the route. The PTDs, CTMCs
and congestion information are managed in a structure called a
probabilistic reservation table (PRT). For planning we use the
information from the PRT to construct single-robot time-varying
Markov automata (TVMA), a generalisation of a Markov
decision process (MDP) that explicitly models uncertainty over
action duration. Crucially, a TVMA allows the planning robot to
consider the influence of the other robots on its route by encod-
ing their presence as congestion probabilities. The policies we
synthesise are resilient to unexpected delays as a robot’s arrival
time to a node is included in the policy’s state space. Therefore,
if a robot arrives late to a location, its policy action may change.

As well as synthesising robot behaviour, we also wish to
accurately predict the performance of the multi-robot system
at execution time. For example, we may wish to know the
probability that a robot will arrive at its goal within a given
time. This can then be used to aid execution monitoring [6],
or to optimise the number of robots in a team [7]. To predict
performance, we require accurate models of robot policy
execution under congestion. We present an iterative procedure
that refines single-robot CTMCs stored in the PRT to accurately
capture the effects of the other robots. We then predict robot
performance by using formal verification techniques to obtain
probabilistic guarantees on the refined CTMCs.

This paper extends the work presented in [8]. We make the
following contributions beyond our prior work:
• The formulation of continuous-time planning problems

under time-varying dynamics as a time-varying Markov
automaton (TVMA).

• An approximate solution to TVMAs which incrementally
builds and solves an MDP abstraction of the TVMA.

• An application of the TVMA solution method to synthesise
efficient robot behaviour for congestion-aware problems.

• An iterative algorithm that refines robot CTMCs to more
accurately represent the influence of other robots.

• An approach to compute probabilistic guarantees over
these CTMCs to predict execution-time robot performance.

These contributions are validated with an extensive set of
experiments on synthetic data and in a robotic simulator.

II. RELATED WORK

Sources of uncertainty can be found in almost any envi-
ronment robots are deployed in. Therefore, it is important to
incorporate environmental uncertainty into robot planning mod-
els. MDPs are a common formalism for this. An MDP models
a system with non-deterministic action choices and stochastic
action outcomes [9]. For mobile robot navigation planning, an
MDP state typically includes the robot’s location, and actions
represent choices of (nearby) locations to attempt to move to.

In this work, we plan for multiple mobile robots under uncer-
tainty. A multi-agent MDP (MMDP) is a natural extension of an

MDP for multiple agents, where the agents act in a joint state
and action space [10]. In a joint model the state space scales ex-
ponentially with the number of robots. Furthermore, MMDPs re-
quire robots to act synchronously. Synchronous execution leads
to suboptimal execution-time behaviour, due to all robots having
to wait for each other to finish acting before a subsequent action
can be performed [11]. In this work we consider actions with
continuous stochastic durations, and robots act asynchronously.

To avoid the exponential scalability of a joint model, it is
possible to plan using single-robot models that are extended
to include some knowledge of the other robots. In [1], [12]
single-robot models aggregate the responses of the other robots
assuming they are only aware of themselves. In [13] robots
also plan on single-robot models using a procedure where
robots consider their team mates more with every iteration.
However, action execution is assumed to be deterministic,
with the output being a sequence of actions, which are less
robust to the probabilistic nature of the environment. In our
work, we approximate multi-robot behaviour by creating
single-robot models which include the effects of congestion.
We generate policies for each robot sequentially, with each
robot considering only those that planned before it. Such an
approximation is common in multi-robot planning [14]–[16].
The quality of plans produced under a sequential planning
assumption is sensitive to the ordering of robots [16], and
determining an optimal ordering is NP-hard [17]. However,
effective priority orderings have been generated using
heuristics [18], [19], as well as optimisation methods [20].

Asynchronous execution can be enabled through the use of
macro actions [21], which are high level behaviours represented
with the options framework [22]. Macro actions are executed
asynchronously, with synchronisation occurring at the level of
the controllers that form the macro actions. Alternatively, action
durations can be represented as continuous stochastic processes,
with shifted Poisson distributions [13], exponential distribu-
tions [23]–[25], or arbitrary temporal distributions [11]. In our
work, we use continuous stochastic processes to represent action
durations as well as the effects of congestion on these durations.

Planning under continuous stochastic action durations re-
quires a continuous-time planning model. In semi-MDPs [22],
each state/action pair has an arbitrary duration distribution.
Generalised semi-MDPs extend this to enable concurrent
events [11], [26]. Continuous-time MDPs (CTMDPs) also allow
concurrent events but restrict action durations to exponential
distributions [27], and have been used to synthesise single-
robot policies [28]. Markov automata generalise CTMDPs with
immediate and exponentially timed transitions [23], and have
been used for multi-robot planning [24], [25].

Robot environments are commonly assumed to be static.
This does not hold for multi-robot systems, as the state of the
robots at a given time affects the duration and outcome of
actions. There exist Markov models capable of capturing such
non-stationary transition dynamics, such as time-dependent
MDPs [29]. However, approaches to solve these models either
scale badly [30] or rely on strong simplifications [31], [32], such
as deterministic models of action duration. Such simplifications
are not applicable to our work, as we aim to explicitly
model and reason about the uncertainty over action duration.
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Recent work [33] has begun to address these issues. There, an
approximate solution to time-varying semi-MDPs is presented,
where non-stationary transition dynamics are learned online and
planning is carried out by extending Monte Carlo tree search
to consider non-stationarity and stochastic transition durations.
This was done under the assumption of non-concurrent actions,
which does not hold in a multi-robot scenario, where robots
execute actions at the same time.

MAPF solvers are widely used for the scalable coordination
of multiple robots, generating collision-free paths for robots
to reach their goals in discretised environments [4]. In [16]
a reservation table is used to store the route information of
the robots, such that robots avoid those who have planned
previously. In this paper, we expand the reservation table to
allow actions with continuous stochastic durations. Most MAPF
solvers assume that navigation actions have deterministic,
discrete durations, and require synchronised execution. A few
works have considered continuous-time MAPF. For example,
in [34], the conflict-based search (CBS) algorithm [35] is
adapted by replacing A* search for low-level path planning with
safe interval path planning [36]. In [37], CBS is reformulated
in terms of the satisfiability modulo theories problem to enable
the use of efficient SAT solvers. Contrary to our work however,
both [34] and [37] assume that the continuous action durations
are not stochastic.

Though MAPF solutions commonly assume deterministic
environments, uncertainty has been considered. In [38], a belief
space is used, giving distributions that appear as ‘tails’ over
the robot’s location. The M* MAPF solver [39] is then adapted
to plan in the belief space of each agent, with coordination
occurring between robots likely to collide. In [40], when a robot
attempts to navigate, it remains stationary with some probability.
To handle action failure, a set of critical dependencies between
robots are computed, which force some robots to wait until
another robot has reached a certain location. Finally, in [41],
the M* solver is adapted to have soft collision constraints, i.e.
collisions are allowed to occur, at some cost. Whilst these works
consider uncertainty, they do so in ad-hoc manners that consider
limited forms of duration uncertainty. In contrast, we propose
a principled way of reasoning about and evaluating timed
properties of robot behaviour, adapting techniques from formal
methods and model checking. We use continuous-time Markov
chains (CTMCs) to model the timed evolution of a system,
where time passes according to a sequence of exponential
delays [42]. Timed properties of CTMCs, such as transient
and steady-state properties, can be expressed using continuous
stochastic logic (CSL) [43], with well established model
checking solutions available [44]. Few works have considered
model checking timed properties of multi-robot systems, and
those that do consider deterministic action durations [45]–[47].

III. PRELIMINARIES

For a set X , |X| denotes the cardinality of X and Dist(X)
denotes the set of distributions over X .

Probability Distributions. We approximate continuous distri-
butions of action durations with discrete random variables.

Definition 3.1. A discrete random variable D may take on
values in the set {d1, d2, ..., dK}. The probability that D takes
on the value dk is given by Pr(D = dk) = pk, where pk ∈
[0, 1] and

∑
k∈{1,...,K} pk = 1.

Topological Map. We represent the environment using a
topological map with probability distributions over navigation
durations.

Definition 3.2. A topological map is a tuple T = 〈V,E, ρ〉,
where: V is a finite set of nodes representing locations in
the environment; E ⊆ V × V is a set of directional edges
which robots can travel on; and ρ : E × N→ Dist(R≥0) is a
function that takes an edge and the number of robots present
on that edge, and returns a distribution over the duration for
an additional robot to traverse that edge.

For edge e = (v, v′) ∈ E, we use src(e) = v and
trg(e) = v′ to denote the source and target of that edge,
respectively. Moreover, we partition the topological edges into
a set of edge groups, which allow us to represent spatial
dependencies between edges.

Definition 3.3. A set of edge groups G = {g1, ..., g|G|} is a
partition of the edge set E, i.e g ⊆ E for all g ∈ G, g∩g′ = ∅
for all g, g′ ∈ G such that g 6= g′, and

⋃
i∈{1,...,|G|} gi = E.

With a slight abuse of notation, we denote the edge group for
e as g(e). We assume edges in the same edge group g are such
that robots present on an edge e ∈ g influence the duration of
traversing all other edges e′ ∈ g. Thus, when counting robots
on e we also consider all other edges in g(e). Furthermore,
for g ∈ G and n ∈ N, we assume ρ(e, n) = ρ(e′, n) for all
e, e′ ∈ g, i.e. we assume that edges in the same edge group
share the same duration distributions.

In this work, for each edge (v, v′) ∈ E, we assume there ex-
ists an edge in the opposite direction (v′, v) ∈ E. These edges
are dependent, since they occupy the same space. We define
the edge groups such that for any edge (v, v′), g((v, v′)) =
{(v, v′), (v′, v)}. Therefore, we do not distinguish between the
direction a robot travels between two nodes. Though other
duration models can be used, for simplicity of presentation we
use this bidirectional model. Other use cases for edge groups
include junctions and narrow corridors with multiple edges.

Time-Varying Markov Automata (TVMA). In this paper,
we address stochastic shortest path problems over labelled
TVMAs, denoted TVMA-SSPs. A TVMA is an extension of a
Markov automata [23], which allows us to model immediate
probabilistic transitions and exponentially timed transitions
with time-varying dynamics [31], [32].

Definition 3.4. A labelled TVMA is a tuple A =
〈S, s̄, A, δ,∆, AP, Lab〉, where S is a finite set of states, s̄
is the initial state, and A is a finite set of actions. δ :
S × A × S × R≥0 → [0, 1] is a time-varying immediate
transition function, such that δ(s, a, s′, t) returns the probability
of instantaneously transitioning to state s′ after action a was
taken in state s at time t. ∆ : S × S × R≥0 → R>0 is a
time-varying exponential transition function, where ∆(s, s′, t)
returns the rate between states s and s′, given that we arrived
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at state s at time t. AP is a finite set of atomic propositions,
and Lab : S → 2AP is a labelling function that maps states to
atomic propositions that hold in that state.

In a TVMA, action choices are made at states with immediate
transitions. Without loss of generality, we assume no state
has both immediate and exponential transitions: immediate
transitions fire instantaneously, and so exponential transitions
will never fire in states with both transitions.

The value of ∆(s, s′, t) is the rate parameter of an expo-
nential distribution associated with the transition. Thus, if we
arrived at state s at time t, the probability that the transition
fires within time τ is 1− e−∆(s,s′,t)·τ . The exit rate of a state
s in A at time t is the sum of all outgoing rates from s,
E(s, t) =

∑
s′∈S ∆(s, s′, t). The probability of leaving state

s within time τ , given that we arrived there at time t, is then
1− e−E(s,t)·τ .

A time invariant transition function does not vary with time,
e.g. for states s, s′, ∀t, t′, ∆(s, s′, t) = ∆(s, s′, t′). We omit
argument t if a transition function is time invariant.

Definition 3.5. A TVMA-SSP is an extension of an SSP [48],
defined as a TVMA A = 〈S, s̄, A, δ,∆, AP, Lab〉, a time-
varying cost structure c : S × A × R≥0 → R>0 and a set
of goal states G ⊆ S. The goal of a TVMA-SSP is to find
a time-varying policy π : S × R≥0 → A that minimises the
expected cost to reach a state in G.

Policies define behaviour by informing the robot which
action to take in a given state at a given time, i.e. π(s, t)
represents the action the robot should take given that it
arrived at state s at time t. As in SSPs over MDPs [49], in
a TVMA-SSP we require the existence of at least one proper
policy, i.e. a policy that, starting in s̄, reaches a goal state with
probability 1; and that for any improper policy, the value of all
states under that policy is ∞. Further, all goal states must be
absorbing, i.e. there must be no transitions from goal states.

Markov Decision Processes (MDPs). In this paper, we use
MDPs to solve an approximated version of the congestion-
aware multi-robot planning problem.

Definition 3.6. An MDP [9] is a TVMA without exponential
transitions and with a time invariant transition function, i.e. an
MDP is a tuple M = 〈S, s̄, A, δ〉, where all elements are as
in a TVMA, with δ being time invariant.

A time invariant policy π : S → A over an MDPM induces
a discrete-time Markov chain (DTMC) Mπ, where, at each
state, the only action available is the policy action.

Continuous-Time Markov Chains (CTMCs). A CTMC
describes the continuous-time evolution of a system. In this
work, we use labelled CTMCs to model the continuous-time
execution of robot policies.

Definition 3.7. A labelled CTMC [42] is a tuple Q =
〈S, init,∆, AP, Lab〉, where S, ∆, AP and Lab are as in
a TVMA, except ∆ is time invariant, and init : S → [0, 1]
gives the probability of a state being the initial state.

Phase-Type Distributions (PTDs). PTDs approximate non-

negative continuous distributions using the time taken to reach
an absorbing state in a CTMC. We use PTDs to model action
durations under congestion.

Definition 3.8. A PTD [50] is a tuple P = 〈S, init,∆, sa〉,
where S, init and ∆ are as in a CTMC, and sa ∈ S is the
single absorbing state such that the probability of reaching sa

is 1. Further, init(sa) = 0.

We denote the expected time for P to reach the absorbing
state as E[P]. Further, the set of all PTDs is denoted P.

To avoid ambiguity, we use a subscript to denote an element
belonging to a model, e.g. SP to represent the state space of
PTD P , or δM to represent the transition function of MDPM.

IV. PROBLEM FORMULATION

In this section, we formulate the problems of planning
(i.e. policy synthesis, Problem 1) and policy evaluation (Prob-
lem 2) under congestion. We start by defining local timed
policies over a topological map, the space of policies our
policy synthesis algorithm searches over.

Definition 4.1. A navigation policy for a robot ri acting on a
topological map T = 〈V,E, ρ〉 is defined as πi : V × R≥0 →
E ∪ {wait}. πi(v, t) represents the action a robot should take,
given it is at location v at time t. If πi(v, t) = e ∈ E, then
edge e should be traversed. If πi(v, t) = wait then robot ri
should wait at node v.

Note that the definition above only assumes local information
for robot ri, namely its location and the current time. This
means the policy can be executed without communicating
with other robots, making our proposed solution resilient to
communication failures. We can now define the multi-robot
policy synthesis problem we tackle in this paper.

Problem 1. Let R = {r1, ..., rn} be a set of robots acting on
a topological map T = 〈V,E, ρ〉, where ri has initial and goal
locations viniti , vgoali ∈ V . Find Π = {π1, π2, ..., πn}, where
πi is a policy for robot ri, such that Π minimises the makespan
of the multi-robot navigation problem, i.e. Π minimises the
time until all robots have reached their goals.

We assume navigation actions always succeed and lead
the robot to the desired location. Therefore, uncertainty only
arises from the temporal uncertainty over navigation duration.

We also consider the problem of accurately model checking
properties of navigation policies:

Problem 2. Let πi be a navigation policy for robot ri, and ϕi
a local property for ri. Evaluate ϕi against the continuous-time
behaviour induced by πi under the effects of congestion.

We motivate Problem 2 as a means to predict the execution-
time performance of the synthesised navigation policies. In
this paper, we evaluate the expected time for a robot to arrive
at its goal, and the probability that a robot arrives at its goal
within time τ . However, the method we propose can be used
for any property that can be model-checked against a CTMC,
e.g. continuous stochastic logic (CSL) or linear temporal logic
(LTL) properties.
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V. FRAMEWORK

In this section we outline our approach to Problems 1 and 2.
A high-level overview of the congestion-aware framework is
given in Fig. 2. There is one global entity, the probabilistic
reservation table (PRT). The PRT keeps track of robot policies,
and represents robot behaviour as a set of congestion distribu-
tions over the topological map (see Section VI-C). To manage
complexity, each robot plans to minimise the expected time to
reach its goal on a single-robot TVMA which approximates
the effects of the other robots. To consider the other robots,
we assume robots plan sequentially, following a pre-defined
priority order. For clarity of notation, a robot’s priority is
defined by its index, i.e. robot r1 plans first, then r2 etc. To
minimise the makespan, we define the priority order using
the heuristic in [18], such that robots with longer routes have
a higher priority. Robot ri begins by querying the PRT to
obtain congestion probabilities summarising previous robot
behaviour (see Section VI-C). These probabilities are used to
construct a TVMA Ai, from which we synthesise a policy πi
(see Section VII-A). From πi, we construct a route CTMC Qi
and insert it into the PRT (see Section VII-C). The route CTMC
captures the continuous-time behaviour induced by πi, and is
used to compute future congestion probabilities. Therefore,
robot ri+1 uses the PRT to reason over the probabilistic effects
of robots r1, ..., ri in its TVMA. The PRT is initially empty.
Therefore, the first robot who plans has no information about
the other robots and so acts optimistically, as it believes it
can follow the shortest path to the goal without interference.
The final robot to plan takes into account all robots. Therefore,
robots who plan earlier have less accurate planning models.

To accurately analyse properties of the synthesised policies
after planning (Problem 2), we need a model that describes
the asynchronous execution of the robot team. To do so, one
could construct a joint CTMC that describes the asynchronous
execution of the full robot team. However, building and
analysing a joint model is intractable for most realistic problems.
Therefore, we use the single-robot route CTMCs stored in
the PRT to approximate the joint model. Before analysis, we
iteratively refine these CTMCs to take into account updated
models of the other robots, particularly those that planned
later (see Section VIII). Refining a robot’s CTMC does
not modify the corresponding policy. The refined CTMC
captures the continuous-time execution of the policy under the
probabilistic effect of all other robots’ policies. This procedure
is independent of the property being evaluated. Any single-
robot property, such as expected time for task completion or
probability of reaching the goal within a time bound, can then
be evaluated on the refined CTMCs using formal verification
techniques. The unrefined CTMCs can be evaluated in the
same way, however these models are less accurate.

We proceed by presenting our probabilistic approach to mod-
elling congestion in Section VI. In Section VII we describe how
we plan for each robot using the congestion models, and in Sec-
tion VIII we present the iterative CTMC refinement procedure.

VI. MODELLING CONGESTION

To synthesise effective robot behaviour, we must capture
the effects of congestion between robots. In this section, we

introduce the probabilistic reservation table (PRT) as a model of
congestion that considers actions with continuous and stochastic
durations.

A. Modelling Action Durations

Recall that we model the environment as a topological map
T = 〈V,E, ρ〉, where ρ(e,m) represents the continuous dis-
tribution over the duration of traversing e ∈ E with m other
robots on the edge. We use PTDs to approximate these duration
distributions, because they allow for the interpretation of robot
policies as CTMCs (see Section VI-C), and to exploit efficient
fitting algorithms [51].

Example 2. Consider Fig. 3, which shows congestion data
observed on the highlighted edge in Fig. 1, as well as PTDs
fitted to that data. This data demonstrates that the navigation
duration for a given congestion level is stochastic, i.e. the
number of robots on an edge are not enough to deterministically
predict the time taken for a robot to traverse the edge. This
is due to other unmodelled disturbances that have an effect
on the resolution of congestion, such as the relative locations
of robots on an edge. This motivates our use of probabilistic
duration models to increase the system’s resilience.

As well as navigating along edges, robots may wait at a node
until congestion is reduced. Due to the stochastic nature of
navigation, waiting is also treated as stochastic, using a waiting
PTD Pω , which we choose to be a two-state PTD with a single
transition from the first to the second state with rate λω .

B. Congestion Bands

We describe levels of congestion in terms of congestion
bands. We use congestion bands because there are cases where
we do not observe a statistical difference in the effects of
congestion between similar numbers of robots (cf. 3 and 4
robots in Fig. 3). A larger number of congestion bands gives
a more accurate measure of congestion while increasing the
complexity of planning. Congestion bands help when we lack
data, as data for a range of numbers of robots is aggregated to
fit a model.

Definition 6.1. Let e ∈ E and n be the total number of robots.
A set of congestion bands Ce = {c0e, c1e, ..., cbe} is such that:
• cje = [lbje, ub

j
e]. A congestion band is an integer interval

on the number of robots, represented by a lower and
upper bound. If k ∈ N robots are present on e, where
lbje ≤ k ≤ ubje then cje is the congestion band on that edge.

• c0e = [0, 0], i.e. a congestion band considering 0 other
robots is always present.

• cbe = [lbbe, n− 1]. The last congestion band has an upper
bound of n− 1, since at most n− 1 other robots can be
present on an edge.

• lbj+1
e = ubje + 1. Congestion bands do not intersect and

each number of robots fits into exactly one band.

We assume that edges in the same edge group share congestion
bands, i.e. given g ∈ G, Ce = Ce′ for all e, e′ ∈ g. A robot
is considered present on an edge e = (v, v′) if they are
traversing it, i.e. they are travelling between v and v′. Using



IEEE TRANSACTIONS ON ROBOTICS 6

Solve	with	
LRTDP-TVMA

Query
Congestion
Probabilities

Iteratively
Update
CTMCs

Insert
Route
CTMC

Query
Congestion
Probabilities

Query
Congestion
Probabilities

Solve	with	
LRTDP-TVMA

Solve	with	
LRTDP-TVMA

Insert
Route
CTMC

Insert
Route
CTMC

Fig. 2. An overview of the congestion-aware framework. Robots plan sequentially. Each robot ri queries the PRT to build its TVMA Ai, which is solved to
obtain a policy πi. A route CTMC Qi representing this policy is inserted into the PRT. After planning, all CTMCs can be updated iteratively to estimate
execution-time robot performance, if required.
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Fig. 3. The effects of congestion on navigation duration for the highlighted edge in Fig. 1. Data was collected using the method outlined in Section IX.
(a) Histograms of the collected data. (b) PTDs fitted from the data in Fig. 3a using the method in [51].

the notion of congestion bands, we introduce a topological
map under congestion.

Definition 6.2. A topological map under congestion is
a tuple TC = 〈V,E,C, ρC〉, where: C =

⋃
e∈E Ce; and

ρC : E × C → P is a function that maps an edge and con-
gestion band (for that edge) to a PTD over the duration of
traversing that edge.

If we consider one congestion band per possible number of
robots, we recover Definition 3.2, but using PTDs to represent
the duration distributions. The connectivity of TC defines how
robots move through the environment. For waiting we add
a self loop, referred to as a wait edge, around each node in
TC , i.e. ∀v ∈ V, (v, v) ∈ E. Wait edges have a single wait
PTD, as congestion can not be experienced when waiting, i.e.
ρC((v, v), c0(v,v)) = Pω, for all v ∈ V .

To simplify notation, we omit subscript e from congestion
band cje if e can be inferred from the context.

C. Computing Congestion Probabilities

To determine the minimum cost policy during planning,
we require the congestion band observed on edge e at time t.
Fig. 3 demonstrates that action durations are stochastic.
When propagated over sequences of actions, this stochasticity

Fig. 4. The pipeline for computing the congestion probabilities on edge e at
time t using the PRT. Note, there may not be a CTMC for all robots at the
time of use.

prevents us from knowing where a robot will be at a given
time. Thus, we consider the probability of each congestion
band occurring on edge e at time t. The process for computing
congestion probabilities is shown in Fig. 4.

To compute the congestion probabilities, we require informa-
tion about the robots’ routes. We use a CTMC Qi to represent
the route of robot ri. CTMCs are a natural representation of
continuous-time robot behaviour, since we can concatenate
the PTDs modelling navigation durations to construct a route
CTMC. Further, the transient properties of this CTMC can
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be used to compute the congestion probabilities [42]. In this
section, we define the assumptions a route CTMC must satisfy,
and in Section VII describe how to construct such a model.

Definition 6.3. Let TC be a topological map under congestion.
A route CTMC is a tuple Q = 〈SQ, initQ,∆Q, APQ, LabQ〉,
where APQ = E ∪ {goal}, i.e. the set of atomic propositions
is comprised of the edges of TC and a goal proposition, and
LabQ is defined such that all non-absorbing states in Q are
labelled with a single topological edge, and absorbing states
are labelled with goal, i.e. for all s ∈ SQ, |LabQ(s)| = 1 and
LabQ(s) = {goal} if and only if s is absorbing.

We require the CTMC labelling function to represent the
robot’s route through the topological map. States labelled with
edge e ∈ E in a route CTMC Qi represent states for which
ri is present on e. The route CTMC states are the union of
the states of a set of PTDs, where each PTD represents an
edge in ri’s route. Thus, each state can be mapped to the
edge modelled by the PTD it comes from.

An absorbing state of the route CTMC represents the
completion of a robot’s route, and is labelled with proposition
goal. The goal proposition is useful for analysing policies,
e.g. computing the expected time for a robot to arrive at its
goal, as required by Problem 2. Policy analysis is discussed
further in Section VIII.

When a robot plans, it builds a route CTMC for its policy
and stores it in the PRT. As depicted in Fig. 4, the first step
to compute the congestion probabilities is to consider the
probability that each robot ri is present on an edge in g(e) at
time t, denoted Pri(e@t). Recall that we must consider all
edges in g(e) as robots present on any edge in g(e) influence
the congestion on e.

To compute Pri(e@t), we compute the transient probabili-
ties over the route CTMC Qi, which returns the probability of
being in each state s ∈ SQi at time t, denoted Pr(s@t). From
the transient probabilities, we can calculate the probability
Pri(e@t) for robot ri by summing across all states labelled
with e:

Pri(e@t) =
∑

{s∈SQi | g(e)∩LabQi (s) 6= ∅}

Pr(s@t) (1)

In practice, the transient probabilities of a CTMC can be
calculated using standard techniques [42].

We compute the probability a robot is present on an edge
using only its route CTMC. This assumes all necessary
congestion information for ri is contained in Qi. However, the
true congestion probabilities change as new route CTMCs are
added to the PRT. Under the sequential planning assumption,
we treat a robot’s route as fixed at the point of insertion
into the PRT. In Section IX, we show empirically how this
assumption still allows us to effectively reason over congestion.
Further, in Section VIII we address how the true congestion
probabilities may be approximated using an iterative procedure
that incrementally updates the PRT.

Step 2 in computing the congestion probabilities for a new
robot is to use the probabilities Pri(e@t) to compute a discrete
distribution over how many other robots are on an edge in
g(e) at time t, i.e. how congested the edge will be. For this

we use the Poisson-binomial distribution, which describes the
outcome of n trials, each distributed by a different Bernoulli
random variable [52]. The Bernoulli random variables model
the presence of each robot on edges in g(e) at time t, distributed
by Pri(e@t). We denote the probability of q other robots being
on an edge in g(e) at time t by Pr(q | e@t).

In step 3 we group the probabilities for each number of
robots on an edge in g(e) at time t into congestion bands.
The probability Pr(cj | e@t) of experiencing congestion band
cj on edge e at time t, considering all edges that influence
the congestion on e, is given by:

Pr(cj | e@t) =

ubje∑
q=lbje

Pr(q | e@t) (2)

D. Defining a PRT

A PRT is initialised with the set of robots R and the topo-
logical map TC . A PRT is a table with an entry for each robot
ri ∈ R. The PRT entry for robot ri, PRT(ri), stores its route
CTMC Qi. Two functions are provided by the PRT: update
and cong. The function update(ri,Qi) updates PRT(ri) by
inserting route CTMC Qi. The function cong(ri, e, j, t) returns
the probability of ri observing congestion band cj on edge e
at time t, computed using the method in Fig. 4.

E. Using the PRT Online

In this paper, we focus on offline planning problems.
However, robots often have to react to tasks arriving online,
e.g. when packing warehouse orders. This can be achieved
with two PRT modifications. The PRT can be accessed by
only one robot at a time. For offline problems, this is handled
by the priority ordering. Online, the priority ordering must
be replaced with an access rule, such as first come first
served, for robots to query the PRT and insert route CTMCs.
Moreover, robots will start tasks at different times. To handle
this, the PRT must log the start time of each robot’s route.
When computing congestion probabilities, the probability of
a robot being on an edge before their start time is zero.

VII. PLANNING UNDER CONGESTION

As described in Problem 1, we wish to synthesise a set
of policies that takes the robots to their respective goals and
minimises the makespan. In this section, we outline how to
plan in a scalable way using single-robot models, where the
effects of congestion are used to summarise the team behaviour.
We also detail how to construct route CTMCs that describe a
robot’s continuous-time behaviour.

A. Single-Robot Planning Models

The congestion probabilities for an edge vary with time.
Further, action durations are represented as PTDs, which are
CTMCs. Therefore, we formulate the planning model for robot
ri as a TVMA. Let SP =

⋃
P∈P SP be the union of all PTD

state spaces, assuming they are disjoint. For s ∈ SP, we write
PTD(s), e(s) and b(s) to denote the PTD, edge, and congestion
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band a state s belongs to respectively. For notational simplicity,
for s ∈ SP, let inits = initPTD(s)(s) be the initial probability
of state s in its respective PTD.

Definition 7.1. Given topological map TC = 〈V,E,C, ρC〉
and the PRT, we define robot ri’s TVMA as Ai =
〈SAi , s̄Ai , AAi , δAi ,∆Ai , APAi , LabAi〉, where:

• SAi = V ∪SP. A state is a topological node or a PTD state.
• s̄Ai = viniti . The initial state is the robot’s initial location.
• AAi = E ∪{wait}. The actions correspond to navigating

the topological map edges, plus waiting.
• δAi models immediate transitions corresponding to action

choices that capture uncertainty over congestion. From
a topological node state s, we choose an outgoing edge
e. For each congestion band cj on edge e there is a
transition from s to the initial states s′ of PTD ρC(e, cj).
The transition probability is the congestion probability
for cje multiplied with the initial probability of s′ in
ρC(e, cj). Formally:

δAi(s, e, s
′, t) =



cong(ri, e, j, t) · inits′ s ∈ V,
s = src(e),

cj = b(s′) and
s′ ∈ SρC(e,cj)

0 otherwise
(3)

• ∆Ai captures the effects of the PTDs. For a state s in
PTD P , the rate to a non-absorbing state s′ in P is
defined according to ∆P . Transitions to the absorbing
state in P now arrive at the target of the edge the robot
was traversing. Formally:

∆Ai(s, s
′, t) =



∆PTD(s)(s, s
′) s, s′ ∈ SPTD(s) and

s′ 6= saPTD(s)

∆PTD(s)(s, s
a
PTD(s)) s ∈ SP,

s′ ∈ V and

s′ = trg(e(s))

0 otherwise
(4)

• APAi = E ∪ {wait, goal}. The atomic propositions
represent the action currently being executed, or the robot
reaching its goal.

• LabAi labels PTD states with the edge they model (or
waiting), and topological nodes at the goal with {goal}.
Formally:

LabAi(s) =


{wait} s ∈ SPω
{e(s)} s ∈ SP \ SPω
{goal} s ∈ V and s = vgoali

∅ otherwise

(5)

In the TVMA, the robot arrives at a location and chooses the
next edge. There is a time-varying congestion distribution on
this edge. For each band, there is then a sequence of exponential

transitions that describe the respective PTD. All PTDs finish
at the location the robot arrives at.

Existing solution methods for Markov automata are
computationally expensive, due to the combination of
immediate and exponential transitions. For timed objectives,
exponential transitions are often ‘digitised’ to be of the same
duration, which makes solution methods slow to converge [53].
To improve scalability, we pose the planning problem for ri as
a TVMA-SSP, where the objective is to minimise the expected
time to reach the goal. As such, the TVMA-SSP cost function
considers only the expected duration of actions; this mitigates
the complexity of digitisation based methods. In Section VIII,
we model-check the synthesised policies on timed properties
to estimate execution-time robot performance.

Definition 7.2. The TVMA-SSP for robot ri is defined as:
• A TVMA Ai according to Definition 7.1.
• A cost function ci : SAi ×AAi ×R≥0 → R≥0 that gives

the expected duration over all congestion bands:

ci(s, e, t) =

{∑
j cong(ri, e, j, t) · E[ρC(e, cj)] s ∈ V

0 otherwise
(6)

where j ∈ {0, ..., |Ce| − 1}.
• A set of goal states Gi defined as:

Gi = {v ∈ V | v = vgoali } (7)

Time-varying transition functions increase the model com-
plexity [31], [32], making an exact solution to the TVMA-SSP
impractical. Therefore, we present an approximate solution,
which adapts LRTDP [54] to incrementally build and solve an
MDP abstraction of the TVMA.

B. LRTDP for TVMAs

To efficiently solve the TVMA-SSP for robot ri, we
adapt labelled real time dynamic programming (LRTDP) to
TVMAs [54]. We refer to this method as LRTDP-TVMA.
LRTDP is a trial-based heuristic search method that uses an
admissible heuristic hi to initialise the value of states, so states
unlikely to contribute to the optimal policy are not explored.

LRTDP-TVMA abstracts the TVMA behaviour into an MDP
Mi. Mi can be built incrementally, as Bellman backups
are performed only on states visited during a trial. An
MDP state is a topological node paired with the time of
arrival to that node. Including time in the state allows us to
consider the time-varying nature of the transitions [33]. In the
TVMA, continuous-time robot behaviour is captured by timed
transitions. We approximate the continuous-time behaviour
in an MDP by discretising the PTDs. We apply the method
in [55], which formulates discretisation as a constrained non-
linear optimisation problem. The objective function is chosen
to preserve the mean and variance of the original distribution.
By preserving more than the mean, we can accurately capture
features of the original distribution.

Definition 7.3. For an edge e ∈ E and congestion band cj ∈
Ce, the discretisation of PTD ρC(e, cj) is a discrete random
variable Dj

e ∈ {d
j
e,1, ..., d

j
e,K}, where Pr(Dj

e = dje,k) = pje,k,
∀k ∈ {1, ...,K}, and K is a user-defined parameter.
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Algorithm 1 LRTDP-TVMA (adapted from [48])

Input: Ai, viniti , convergence threshold θ, time bound T
Output: Greedy policy πi, value function V

1: function LRTDP-TVMA(Ai, viniti , θ, T )
2: while (viniti , 0) not labelled solved and time left do
3: LRTDP-TVMA-TRIAL(Ai, viniti , θ, T )
4: end while
5: end function
6:
7: function LRTDP-TVMA-TRIAL(Ai, viniti , θ, T )
8: visited← empty stack
9: v ← viniti , t← 0

10: while (v, t) not labelled solved do
11: push (v, t) onto visited
12: // Check for termination
13: if (v, t) ∈ Gi or t > T then
14: break
15: end if
16: // Perform Bellman backup & update policy
17: πi(v, t)← argmina∈AAi

Q((v, t), a)

18: V ((v, t))← Q((v, t), πi(v, t))
19: // Sample successor MDP state
20: cj ← sample according to cong(ri, πi(v, t), j, t)
21: djπi(v,t),k ← sample according to Dj

πi(v,t)

22: v ← trg(πi(v, t)), t← t+ djπi(v,t),k
23: end while
24: // Update solved label for visited states
25: while visited 6= empty stack do
26: (v, t)← pop the top of visited
27: if ¬check_solved((v, t), θ) then
28: break
29: end if
30: end while
31: end function

In MDP Mi, the robot arrives at node v at time t, and
chooses an edge e. As in the TVMA, there is a congestion
distribution over edge e, dependent on t. The duration of e
under congestion band cj is determined from a value dje,k ∈ Dj

e,
with the robot completing edge e at time t + dje,k. Each
state/action pair in the MDP has K successors per available
congestion band. The transition probabilities combine the
congestion probabilities and discretised PTDs.

In Algorithm 1, we present LRTDP-TVMA, which incre-
mentally builds the MDP abstraction of the TVMA. The main
loop of LRTDP-TVMA (lines 2-4) runs trials until convergence
is reached, or a fixed computational budget is exceeded.

For each LRTDP-TVMA trial (lines 7-31), we begin by
setting the MDP initial state (line 9), which is the robot’s
initial location at time 0. A trial samples through Mi until the
termination condition in line 13 is met. Including time in the
MDP state raises the possibility of a trial never terminating.
To counteract this possibility, we introduce a time bound T ,
where any state with a time greater than T is made a dead end,
terminating the trial. Trials are also terminated if the goal

location is reached. The goal set Gi is modified to ensure the
goal is reached within time T :

Gi = {(v, t) ∈ V × R≥0 | v = vgoali and t < T} (8)

Assuming navigation always succeeds, a robot can reach
its goal location with probability 1. Under a finite horizon,
exceeding time bound T is the only way to not reach the
goal. If T is above any realistic time to reach the goal, the
planning model is a finite-horizon SSP with avoidable dead
ends. Goal states are defined as in Eq. 8; a dead end is any
state with time greater than T . A policy will reach a goal state
or a dead end, not both. Since dead ends are avoidable, there
exists a reachable goal state. Therefore, there is guaranteed
to exist a policy that reaches a goal state. As trials terminate
at dead ends, all trials will terminate. This allows LRTDP to
synthesise optimal policies, since policies that reach the goal
will do so in less time than those that reach a dead end [56].

In lines 17 and 18, we perform a Bellman backup on the cur-
rent state. The value function V gives the expected cost to the
goal from a state. The policy πi informs which action to choose
in a state, where the actions in Mi are identical to the TVMA.
The Q value for a state/action pair is the immediate cost of the
action, plus the value of subsequently following πi to the goal:

Q((v, t), e) = ci(v, e, t) +∑
j

cong(ri, e, j, t)·∑
k

pje,k · V ((trg(e), t+ dje,k))

(9)

where j ∈ {0, ..., |Ce| − 1} and k ∈ {1, ..., |Dj
e|}. Eq. 9

implicitly defines the MDP transition function. For example,
the probability of reaching state (v′, t+ dje,k) after choosing
edge e = (v, v′) in state (v, t) is cong(ri, e, j, t) · pje,k.

In lines 20-22, we sample a successor MDP state. First,
we sample a congestion band given the policy edge and
current time (line 20). Next, the edge duration is sampled
from the discretised PTD (line 21). The successor state is
the destination of the policy edge after adding the sampled
duration to the previous time.

In lines 25-30 we update the ‘solved’ label for states visited
during the trial. A solved state does not need to be explored
any further. Visiting a solved state terminates the trial (line 10).
If the initial MDP state (viniti , 0) is solved, LRTDP-TVMA has
converged. The check_solved function is implemented as
in [54]. LRTDP-TVMA maintains a search tree, which forms
the explored portion of the MDP abstraction of the TVMA. The
check_solved function explores the sub-tree rooted at a
state (v, t). If the value of (v, t) has changed below a threshold
θ since its last Bellman backup, and all of its descendants in
the sub-tree are solved, (v, t) is considered solved. If (v, t) is
not solved, Bellman backups are performed on all unsolved
states of the sub-tree.

The value V ((v, t)) of an MDP state (v, t) is initialised with
a heuristic hi : SMi

→ R≥0, which we define as:

hi((v, t)) = min cost(v, vgoali ), (10)
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where min cost returns the minimum cost to travel from
v to vgoali , which we compute using the Floyd-Warshall
algorithm [57]. The cost of each edge e in min cost is set to
E[ρC(e, c0)], the expected duration assuming no congestion.

Increasing the discretised PTD size K improves the granu-
larity ofMi. As K →∞, we obtain a continuous-space MDP
that is semantically equivalent to the TVMA in Definition 7.1.

To define the policy over the TVMA, we adapt the LRTDP
policy to be piecewise constant [58], where for node v at time
t we return the action for the MDP state at node v with time
closest to t. This is necessary for execution, as a robot will never
arrive at a node at precisely a time in one of the MDP states.

C. Constructing a Robot’s Route CTMC

In the congestion-aware framework, a robot plans by taking
the best action considering the robots who planned before,
whose effects are encapsulated by the congestion probabilities
computed by the PRT. To compute these probabilities, the PRT
requires a route CTMC for each robot that has planned.

Route CTMCs are constructed using a robot’s MDP produced
by Algorithm 1, its policy, and the PTDs. Recall that the
LRTDP-TVMA search tree represents the explored portion
of the MDP abstraction of the TVMA. By applying the
policy at each state in the tree, we obtain the induced DTMC,
which captures uncertainty over congestion and action duration.
DTMC transitions first branch according to the congestion
probabilities, and then the discretised PTDs, according to
lines 20 and 21 of Algorithm 1.

Example 3. Consider Fig. 5a, which shows an induced
DTMC annotated with actions, congestion bands and values
of the discretised PTDs. The transitions combine the conges-
tion probabilities and discretised PTDs, e.g. δMπi

i
(s1, s3) =

cong(ri, e2, 0, ts1) · Pr(D0 = d0
1) = 0.6 · 0.9 = 0.54.

To construct the route CTMC we first combine the DTMC
and PTDs to produce a time-invariant Markov automata without
action choice Di, i.e. where states with immediate transitions
have at most one action available [23]. There is a PTD for
each congestion band a robot may observe on an edge. After
branching by congestion band cje in a DTMC state (v, t),
we reach a pseudo-state (v, t, cje) before branching by the
discretised PTD. To build Di, pseudo-states are replaced with
the corresponding PTD. Immediate transitions to the pseudo-
state are connected to the PTD initial states as in Eq. 3.

Example 4. Consider Fig. 5a and Fig. 5b, where we assume
that the PTDs for the congestion bands in Fig. 5a are as depicted
in Fig. 5b. Absorbing PTD states are represented by concentric
circles. The smaller circles in Fig. 5a represent pseudo-states.
To build Di, the pseudo-state for band c0 between states s1

and s3 in Fig. 5a would be replaced with the PTD for band
c0e2 . From the absorbing PTD state, we then branch according
to d0

1 or d0
2. We do not show Di due to space constraints.

To build a route CTMC from a time-invariant Markov
automata without action choice, we collapse the immediate
transitions into the timed transitions. The collapsing process is
adapted from [59]. A timed transition followed by a sequence

of immediate transitions is collapsed into a single timed
transition via multiplication. The new timed transitions capture
uncertainty over congestion and action duration. Immediate
transitions from the initial state are collapsed into the CTMC
initial state distribution. After collapsing, we label the route
CTMC states as in the robot’s TVMA.

Example 5. Consider Fig. 6, which illustrates the collapsing
process. For example, ∆Qi(s0, s4) = ∆Di(s0, s1)·δDi(s1, s2)·
δDi(s2, s4) = λ ·0.6 ·0.8 = 0.48λ. If we apply this to the time-
invariant Markov automata without action choice produced
from Fig. 5a and Fig. 5b as explained in Example 4, we
construct the route CTMC in Fig. 5c.

D. Complexity Analysis

Our framework avoids the exponential complexity of plan-
ning on joint models. For each robot, we obtain a policy with
LRTDP-TVMA, and construct a route CTMC. A robot’s MDP,
built by LRTDP-TVMA, is a directed acyclic graph, where up to
|AMi

| actions are enabled at each state. For each action, there
are successor states for each discretised PTD value for each
congestion band. Each MDP transition advances time by at least
mine,j E[ρC(e, cj)], and so the maximum MDP depth is d =⌈

T
mine,j E[ρC(e,cj)]

⌉
, i.e. the maximum number of transitions be-

fore reaching the goal or a dead end. Therefore, the worst case
state space size for a robot’s MDP is O((|AMi

| · |Cmax
e | ·K)d),

where Cmax
e is the largest congestion band set. A route CTMC

is built from an induced DTMC, where only one action is
enabled at each state. Each DTMC transition is replaced with
a PTD. Thus, the worst case route CTMC size is O(|Smax

P | ·
(|Cmax

e | ·K)d), where Smax
P is the largest PTD state space. The

time complexity for route CTMC construction is equal to its
size. Neither of these models depend on the number of robots.

The team size only impacts the time complexity of Bellman
backups: let Smax

Q be the largest route CTMC state space,
and Λ be the maximum exit rate across all PTDs. The
worst case time complexity for CTMC transient analysis
is O(|Smax

Q |3 · log(ΛT )) [42], [60]. The Bellman backup
complexity is O(|SMi

|·|AMi
|·(n−1)·|Smax

Q |3 ·log(ΛT )); for
each state/action pair, we may need to analyse n− 1 CTMCs
to compute the congestion probabilities. We abstract a robot’s
TVMA into a finite-horizon SSP MDP, which can be solved by
performing a single Bellman backup per state [48]. This gives
a time complexity of O(|SMi

|2 · |AMi
| · (n − 1) · |Smax

Q |3 ·
log(ΛT )). LRTDP improves upon this in practice. Therefore,
single-robot planning scales polynomially with the team size.
This result extends to planning for the whole team.

VIII. POLICY EXECUTION MODEL REFINEMENT

In this section, we detail our approach to Problem 2. Our
goal is to evaluate a property on the policy obtained by a robot,
which can be used to predict execution-time performance. Our
approach leverages our solution to Problem 1, namely the
use of route CTMCs to capture robot policy execution under
congestion.
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(a) (b) (c)

Fig. 5. The process of generating a route CTMC from a robot’s policy. (a) An induced DTMC Mπi
i . (b) PTDs experienced in the MDP/DTMC. (c) The route

CTMC Qi produced by applying our method to Fig. 5a and Fig. 5b.

1

(a) (b)

Fig. 6. The process of collapsing immediate transitions into timed transitions.
Solid lines are immediate transitions; dashed lines are timed. (a) A time-
invariant Markov automata Di without action choice. (b) The CTMC Qi
obtained from collapsing the immediate transitions.

A. The Full Joint Model

To evaluate properties on robot policies requires model
checking a joint CTMC which describes the asynchronous,
continuous-time execution of the team. The joint CTMC
combines the single-robot CTMCs and accurately captures the
effects of congestion by observing congestion levels directly.
The joint CTMC acts in the joint state space of the robots, i.e.
Sjoint = SQ1

× ...×SQn , and so the joint state of the team is
observable. Since the edge currently being traversed by each
robot can be observed, the exact congestion levels across the
environment are computed by counting the number of robots
on each edge. The number of robots is then mapped to the
corresponding congestion band.

In a joint state, we can observe each robot’s progress through
their current PTD. In the single-robot CTMCs, exponential
transitions either progress the robot along its current edge PTD,
or switch it to a new PTD if the edge is finished. Joint CTMC
states consider the outgoing transitions for each robot. Each
joint CTMC transition is associated with one robot, and changes
only the local state for that robot. When a transition fires that

finishes a robot’s current PTD, their next PTD is determined
by the policy edge and congestion level on that edge.

By tracking each robot’s progress, the joint CTMC accurately
captures the effects of congestion on policy execution. However,
the size of the state space increases exponentially with the
number of robots. Further, the size of the joint state space
increases as PTDs become larger; many PTD states may be
required to accurately model edge durations. Empirically, we
observe that it is impractical to construct and model check the
joint CTMC for more than 2 robot problems. Statistical model
checking techniques [61] analyse the joint CTMC without enu-
merating the full state space. However, these methods become
cumbersome for large numbers of robots. Therefore, we desire a
more compact, scalable representation of joint robot behaviour.

B. Approximating the Joint Model with Single-Robot Models

As an alternative to model checking the joint CTMC, we
consider model checking the single-robot CTMCs stored in the
PRT. However, the initial route CTMC for ri only considers
robots r1 to ri−1, providing inaccurate congestion information.
We require more accurate representations of congestion, and so
in Algorithm 2 we propose an iterative procedure that incremen-
tally updates the route CTMCs after all robots have planned.
In each iteration, a route CTMC is selected and refined using
the current information in the PRT. The updated route CTMC
is then inserted back into the PRT, ready for the next iteration.

In Line 2 of Algorithm 2, we choose the next robot to
update. In Line 3, we refine the CTMC for the chosen robot
using the method in Section VII-C and the current congestion
probabilities obtained from the PRT. The refined route CTMC
differs only in its congestion probabilities; its structure remains
unchanged. Refining a robot’s route CTMC does not change
its policy. We then update the robot’s CTMC in the PRT in
Line 4. Lines 2-4 are repeated until all models converge.

Choosing the Next Robot: The choose_next_robot
function in Algorithm 2 may be defined arbitrarily under a
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Algorithm 2 The Iterative CTMC Refinement Procedure

Input: PRT, set of policies Π = {πi, π2, ..., πn}
Output: Refined set of CTMCs {Q1,Q2, ...,Qn}

1: while not converged do
2: ri ← choose_next_robot()
3: Qi ← refine_CTMC(ri)
4: update(ri,Qi)
5: end while
6: return {Q1,Q2, ...,Qn}

fairness assumption, i.e. each robot is selected infinitely often.
However, this choice affects the rate at which Algorithm 2
converges. In Section IX, we analyse a number of heuristics
for choosing the next robot.

Testing for Convergence: To test convergence of Algo-
rithm 2, we consider how a robot’s route CTMC changes
between updates. We introduce a distance function over CTMCs
with the same state space, defined as the maximum absolute
difference in the rate of a transition between two CTMCs with
the same state space SQ:

d(Q,Q′) =

{
max
s,s′
|∆Q(s, s′)−∆Q′(s, s′)| SQ = SQ′

∞ otherwise
(11)

Defining Qi as the CTMC for ri prior to its last refinement
and Q′i as the current CTMC for ri, the test for convergence
is then defined as:

max
ri∈R

d(Qi,Q′i) < ξ, (12)

where ξ is a small convergence threshold.
The CTMCs produced by Algorithm 2 are much smaller than

the joint CTMC and therefore more practical to model check.
However, these CTMCs are approximate. The single-robot
CTMCs only reproduce the joint CTMC exactly in uncongested
problems, where the joint CTMC is the parallel composition
of the single-robot CTMCs. In all other cases, the single-robot
CTMCs contain less information than the joint CTMC, as the
congestion probabilities summarise the effects of congestion
using only information local to ri, whereas the joint CTMC
keeps track of the global team state. In the next section we
will show that the refined single-robot CTMCs provide a more
accurate model of congestion than the initial CTMCs stored
in the PRT after planning.

IX. EXPERIMENTS

In this section we analyse the congestion-aware framework
in terms of its scalability, execution-time performance, and
predictions of execution-time behaviour. All experiments
are run on Ubuntu 16.04, with an Intel Core i7-8700
CPU@3.2GHz, and 64GB of RAM. We use the PRISM model
checker to compute the transient probabilities of CTMCs,
and for model checking [62]. All software is written in
Python, except for PRISM, which is written in Java/C++. All

1

(a) (b)

Fig. 7. The maps used for the synthetic experiments. (a) A 5×5 warehouse.
(b) Warehouse with tunnel.

experimental problems follow Problem 1, i.e. find a set of
policies that take each robot to its goal location.

In the PRT, very small congestion probabilities are sometimes
observed that bear no practical gain. Therefore, we define a
pruning threshold ε and set all congestion probabilities below
ε to 0. The congestion distribution is then normalised to adjust
for the removed probability mass.

For all experiments, we set the discretised PTD size to
K = 1, i.e. we consider the expected value of the original
PTD with probability 1. Increasing K increases the size of the
route CTMCs. Reading larger CTMCs into PRISM becomes a
bottleneck, decreasing scalability. Further, for the problems in
this paper, increasing K did not improve the policies.

We compare the congestion-aware planner against two
baselines. The first baseline treats all robots independently, i.e.
robots ignore each other during planning. Under this baseline
robots follow their shortest path to the goal, assuming no
congestion. The second baseline acts similarly to our frame-
work: robots plan sequentially using the priority order heuristic
in [18], and insert a route CTMC into the PRT after planning.
However, under this baseline we only consider an edge during
planning if the probability of one or more robots on the edge
is less than a threshold ε = 0.1. If an edge is considered, the
TVMA states that the robot deterministically traverses the edge
under no congestion. The threshold ε is set as low as possible
while still allowing plans to be synthesised. This baseline is
similar to a deterministic MAPF approach, as robot interactions
are almost entirely avoided during planning. If the threshold is
set to 0, the environmental uncertainty would result in no plans
being found, and so avoidance cannot be guaranteed during ex-
ecution. These baselines provide two orthogonal approaches for
handling execution-time robot interactions during planning: the
independent baseline ignores interactions, whereas the MAPF
baseline handles interactions conservatively. The high-level
planner does not resolve execution-time interactions between
robots; this is handled by a motion planner (see Section IX-B).

A. Validation in Synthetic Environments

We created 3 maps using synthetic data. These maps were a
5×5 and 15×15 warehouse map (see Fig. 7a, the 15×15 map
is the 5×5 map scaled up), as well as a warehouse with a tunnel,
designed to produce congestion (see Fig. 7b). The map sizes
refer to the number of topological nodes along each dimension.

The underlying duration distributions were created using
lognormals, where for each successive number of robots, the
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mode and variance is increased, as observed in practice. We
generated 1000 samples from each lognormal, and fit PTDs
using the method in [51]. For each edge we defined four
congestion bands, [0, 0], [1, 3], [4, 5], [6, n−1]. All edges follow
the same distributions, with minor variations made on each edge
to ensure a representative state space in the MDPs produced by
Algorithm 1. We set the PRT pruning threshold as ε = 10−4

and the LRTDP-TVMA time bound as T = 200s. LRTDP is
run until convergence or 150 trials are run. E[Pω] is set to
the expected duration of an edge (which are all of the same
length) under no congestion.

Planner Scalability. To analyse the planner’s scalability, 20
random robot configurations were generated for each environ-
ment for 2-15 robot problems. Scalability is measured in terms
of the time taken for all robots to obtain a policy. This includes
the time to construct route CTMCs and compute congestion
probabilities. The results of this experiment for the congestion-
aware framework and both baselines are displayed in Fig. 8.

The congestion-aware framework mitigates the exponential
state space increase observed in joint models on all maps.
Larger maps give longer planning times, as the routes are
typically longer, increasing the problem size. The variance
in the results is due to the variance in congestion across
problem configurations. Under lower congestion, the branching
factor of the MDPs produced by Algorithm 1 decrease as
fewer congestion bands are experienced. This reduces planning
time, as LRTDP-TVMA converges in fewer trials and fewer
congestion probabilities are computed. For example, the times
for the warehouse with tunnel map are typically longer than
for the 5 × 5 warehouse despite their similar size, as the
tunnel causes congestion. In the worst case, the congestion-
aware framework takes a significant time to plan, as prolonged
congestion drastically increases the size of the MDP abstraction
of the TVMA. For example, in Fig. 8b and Fig. 8c, 1 out of
the 20 problems takes much longer to plan for.

The independent baseline is significantly faster than the other
methods, as planning reduces to solving A* search over the
topological map. The congestion-aware method plans quicker
than the MAPF baseline approximately 60% of the time. The
constrained behaviour of the MAPF baseline causes robots to
take longer routes, increasing the time of LRTDP-TVMA trials.
However, in the worst case, the congestion-aware method takes
significantly longer to plan (cf. Fig. 8b). In highly congested
environments, the MDPs built by LRTDP-TVMA will have a
high branching factor, increasing the state space. Computing
congestion probabilities requires expensive model checking
operations, increasing planning time. This state space increase is
much slower under the MAPF baseline, as only one congestion
band is experienced per edge. The effects of congestion also
cause the MAPF baseline to frequently use wait actions, which
do not require costly PRT operations.

Performance of the Obtained Policies. To evaluate perfor-
mance in synthetic environments, we generated a problem for 2-
10 robots on the 5×5 warehouse map. Each additional robot in-
creases the chance of congestion. For each problem we evaluate
the execution-time team performance in terms of the makespan.
We measure the makespan by generating 1000 samples through

the full joint CTMC for each method/number of robots.
Empirically we found that 1000 samples provided an effective
trade-off between computational cost and variance over the
makespan. Results for this experiment are shown in Fig. 9.

Outliers in Fig. 9 occur when congestion is heavier than
expected, or the sampled durations are near the PTD tails. Be-
yond 4 robots, the congestion-aware planner outperforms both
baselines. The MAPF baseline is conservative, synthesising
long routes with high makespans. The independent baseline
ignores robot interactions. This causes heavy congestion during
execution, increasing the makespan. Conversely, our planner
effectively distributes robots across the map, reducing the
makespan. For 2-4 robots, all methods perform similarly. For
fewer robots there is less congestion, and so all 3 methods
synthesise similar policies. In Section IX-B, we evaluate the
planning methods on simulated robot behaviour.

The Effect of Congestion Bands. Next, we analyse how the
number of congestion bands per edge affects scalability and
makespan. Using the warehouse with tunnel map in Fig. 7b, we
generate a single heavily congested problem for 10 robots. We
vary the number of congestion bands between 2 and 10. We
measure the total planning time over 20 repeats for each number
of congestion bands. The makespan is estimated by generating
1000 samples through the full joint CTMC that results from the
synthesised policies for each number of congestion bands. The
joint CTMC uses a congestion band for each number of robots,
the most accurate representation of congestion. Congestion
bands were chosen to be as equal in size as possible, except
the first congestion band is always [0, 0]. Where this was not
possible the congestion bands were smaller for lower numbers
of robots. For example, for 5 congestion bands, the bands were
set to [0, 0], [1, 2], [3, 4], [5, 6], [7, 9]. In Fig. 10 and Fig. 11
we show how the scalability and makespan change with the
number of congestion bands.

The complexity of planning increases with the number
of congestion bands, as the branching factor of the MDPs
produced by Algorithm 1 increases. For 8-10 bands, the rate of
increase decreases. The newly added congestion bands are for
higher numbers of robots, which are rarely experienced. The
effect on the MDP branching factor is minimal, and so there is
little change in planning time. For 2 and 3 congestion bands,
the planning time is higher than for 4. If there are too few
congestion bands, we plan on an inaccurate model of congestion.
For example, if we use 2 congestion bands, the effects of 1
robot on an edge is treated the same as if there were 9. Since
low levels of congestion incur a large cost in this inaccurate
model, robots plan to avoid all congestion, which increases
the length of routes and LRTDP-TVMA trials, increasing the
planning time. Longer routes give higher makespans; in Fig. 11,
the makespans for 2 and 3 congestion bands are higher on
average than for 4-10. The increased makespans demonstrate
the consequences of an inaccurate congestion model. It is
much quicker to plan for 4 congestion bands than for 10,
despite no significant change in makespan. This suggests the
robots are planning near identical routes. Therefore, using
more congestion bands may increase the planning time at
no practical gain. With this, we see that we can synthesise
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Fig. 8. The scalability across the warehouse maps. Fig. 8a - 8c show the scalability of the congestion-aware method. Fig. 8d - 8f show the scalability of the
independent baseline, and Fig. 8g - 8i show the scalability of the MAPF baseline.
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Fig. 9. The observed makespans for each of the 3 planning methods in the
synthetic policy evaluation experiment.

efficient behaviour using a small number of congestion bands.

Analysing the Iterative Refinement Procedure. For each
problem on the warehouse with tunnel map used to test planner
scalability (cf. Fig. 7b), we ran Algorithm 2 after planning
to analyse its scalability and performance. The convergence
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Fig. 10. The effect of the number of congestion bands on planning time.

threshold ξ was set to ξ = 10−6. The order in which CTMCs
are refined in Algorithm 2 affects the convergence speed (cf.
Section VIII). We compare 3 different heuristics:

• Random: The next robot is chosen randomly.
• Sequential: Robots are selected in a round-robin fashion

according to the priority order.
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Fig. 11. The effect of the number of congestion bands on makespan.

• Maximum difference: We choose the robot whose CTMC
changed the most the last time it was refined, according
to the CTMC difference metric in Eq. 11. To compute
this, all robots must have their CTMC rebuilt at least
once. Therefore, for the first n iterations we use the
sequential heuristic. The CTMC difference acts as a proxy
for how inaccurate a robot’s CTMC is. This heuristic is
similar to prioritised sweeping, used for ordering dynamic
programming updates [63].

The above heuristics operate under a fairness assumption.
However, the use of a convergence threshold breaks this
assumption, as each CTMC is refined only a finite number
of times. This may affect the results of Algorithm 2 under
different heuristics.

In Fig. 12, we detail the number of iterations/CTMC
refinements before convergence in Algorithm 2. In Table I
we show the mean times with standard deviation. The random
heuristic scales poorly, as it often rebuilds the CTMCs of
robots who have no new information to incorporate, e.g. if
a robot’s route is clear of all other robots. The maximum
difference heuristic performs best in terms of iterations and
time, as it rebuilds only the CTMCs likely to be improved.
The sequential heuristic performs worse than the maximum
difference heuristic, as the planning order forces us to rebuild
the CTMCs of robots who may have already converged. The
worst case convergence times highlight the difference between
heuristics. For 10 robots, the worst case time for the sequential
and random heuristic were approximately 2.6 and 4.6 times
longer than the maximum difference heuristic respectively.

Though the full joint CTMC cannot be replicated using
single-robot CTMCs, Algorithm 2 is designed to provide a
close, tractable approximation. Therefore, the final CTMCs
produced by Algorithm 2 should provide a closer approximation
of the joint model than the initial CTMCs stored in the PRT
immediately after planning. To demonstrate this improvement,
we compare the evaluation of expected time and time-bounded
reachability properties between the initial and final CTMCs.
We consider the mean error of the single-robot CTMCs from
the true joint CTMC values across the team. To evaluate the
joint model, we generated 1000 samples through it. Sampling
is similar to statistical model checking techniques [61]. The
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Fig. 12. The number of iterations of Algorithm 2 for each heuristic to reach
convergence.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Initial Mean CTMC Error

0.00

0.25

0.50

0.75

1.00

1.25

1.50

F
in

a
l 
M

e
a
n
 C

T
M

C
 E

rr
o
r

Fig. 13. The difference in expected time error between the initial and final
CTMCs. Each point gives the mean error across the entire team.

advantage of using Algorithm 2 over statistical model checking
on the joint model is that the single-robot CTMCs are property
independent. Using statistical model checking requires a new
set of samples for each property to be evaluated, which
is cumbersome, particularly for larger problems. For time-
bounded reachability, the time bound is selected as the expected
time to traverse the longest straight line of nodes in the map,
under no congestion. This is computed using the PTDs. In
Fig. 13 and Fig. 14 we show the results for expected time and
time-bounded reachability respectively.

For both properties, the final CTMCs give a consistently
small error against the joint model. In the majority of cases this
error is lower than for the initial CTMCs. Cases where the initial
and final CTMCs give the same error are attributed to uncon-
gested problems, i.e. the robots never interact. In a few instances
the initial CTMCs produce a smaller error. These instances
occur in problems where 2 or more robots follow the same set of
edges simultaneously. The first robot to plan underestimates the
time to reach the goal in its initial CTMC. This underestimate
is closer to the true value of the property than the joint CTMC,
resulting in a lower mean error. These results show that evalu-
ating timed properties on the CTMCs produced by Algorithm 2
provides a close approximation to the full joint model, provid-
ing an accurate estimate of execution-time robot behaviour.
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TABLE I
THE MEAN TIMES IN SECONDS ± STANDARD DEVIATION TO COMPLETE ALGORITHM 2 FOR EACH OF THE 3 HEURISTICS.

Number of Robots 2 3 4 5 6 7 8 9 10
Random Heuristic 1.34± 2.05 3.78± 5.2 8.65± 11.9 38.1± 89.5 152± 270 236± 451 706± 1582 3018± 6967 7747± 18807
Sequential Heuristic 1.29± 1.99 2.98± 3.85 6.3± 7.96 20.7± 48.6 79.7± 132 161± 343 390± 903 1776± 4187 3948± 10370
Max Difference Heuristic 1.29± 1.98 2.94± 3.83 5.75± 6.96 16.3± 33.7 73.3± 126 151± 321 352± 874 877± 2029 1693± 4067

Cells in bold have the lowest mean time for that number of robots.
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Fig. 14. The difference in time-bounded reachability error between the initial
and final CTMCs. Each point gives the mean error across the entire team.

B. Validation in a Simulated Environment

To test execution-time performance, we simulate 5 robots in
ROS using the Stage simulator with the map seen in Fig. 1. All
robots use Smach state machines to coordinate navigation using
Move Base Flex tailored to multi-robot systems [64]. The state
machines constrain robots to travel via topological edges and
maintain collision avoidance. A centralised node detects inter-
secting robot paths and forces some robots to wait to avoid col-
lisions. When a robot executes a wait action, a waiting time is
sampled from Pω . Having two tunnels on the map allows robots
to take the longer tunnel if the shorter one is too congested.
PTDs were fit from simulated data, by repeatedly sending robots
through targeted edges on the map. Whenever a robot traversed
an edge, the duration and number of robots on the edge was
recorded. To ensure enough data was collected to be represen-
tative, we focused collection on a small subset of edges, and
reused this data for edges of the same length. Fig. 3 shows an
example set of PTDs from this map, alongside the data collected.
We use 5 congestion bands, one for each number of robots.

Performance of the Obtained Policies. We evaluated 6
problem configurations on the congestion-aware planner and 2
baselines. For each problem, each method was run 40 times.
The value of E[Pω] was set to the expected duration of the
shortest edge, under no congestion. Across all problems, 3
robots begin on the larger side of the map and 2 on the smaller
side. In problem 0, each robot’s goal is on the same side of the
map as their initial location. For problems 1-5, the problem
number states how many robots must travel to the other side
of the map. Congestion increases as more robots switch sides
of the map. In this experiment we measure the makespan, i.e.
the time until the last robot reaches its goal.

The makespans for each problem and method are presented in
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Fig. 15. The observed makespans for each of the 3 planning methods in the
simulation experiment.

Fig. 15. In Table II, we show the results of a Mann-Whitney U
test comparing the congestion-aware method to both baselines.
The null hypothesis is rejected if p < 0.05. Outliers occur when
the motion planner takes longer to resolve congestion. The
stochastic nature of the environment means congestion may still
occur under the MAPF baseline. This significantly affects the
makespan, since congestion was unexpected during planning.
The congestion-aware method outperforms the MAPF baseline
in all problems, as the MAPF baseline avoids congestion, even
if it would only incur a small cost.

The congestion-aware method and independent baseline
produce similar policies for less congested problems. For
problems 0, 1 and 3, there is no statistical difference between
their makespans, as the cost of congestion is less than that
of alternate routes. However, for problem 2 the congestion-
aware framework produces lower makespans. This is likely
due to the independent baseline choosing randomly between
two identical length routes, where one causes congestion. The
congestion-aware method will choose the uncongested route.
For problems 4 and 5, the congestion-aware method produces
statistically lower results than the independent baseline, as
it routes robots through the top tunnel in Fig. 1, minimising
congestion. The independent baseline routes all robots through
the central tunnel, causing heavy congestion. This demonstrates
how the independent baseline fails to handle robot interactions.

Accuracy of Policy Evaluation. The refined single-robot
CTMCs (and the full joint CTMC) rely on the environment
model being accurate, i.e. the PTDs accurately model action du-
rations and the effects of congestion. To test whether this holds
in practice, we ran Algorithm 2 using the congestion-aware
policies obtained in the previous experiment. We then evaluated
the expected time property on each robot’s CTMC, as well as
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TABLE II
THE p VALUES COMPUTED FROM A ONE-SIDED MANN-WHITNEY U TEST COMPARING THE SIMULATION TIMES FOR THE CONGESTION-AWARE

METHOD AGAINST THE 2 BASELINES.

Problem Number 0 1 2 3 4 5
Against Independent Baseline 8.92× 10−1 3.48× 10−1 2.41× 10−6 6.59× 10−1 1.26× 10−5 4.42× 10−5

Against MAPF Baseline 5.04× 10−12 3.27× 10−2 1.42× 10−12 2.42× 10−10 1.29× 10−6 2.73× 10−8

Cells in bold are where p < 0.05 and the mean rank is lower for the congestion-aware method, i.e. the congestion-aware method gives statistically
significantly lower makespans.

the joint CTMC. We obtain joint CTMC values by averaging
1000 samples for each problem. We then compare these values
against the times recorded for each robot over the 40 simulated
runs of each problem. These results can be seen in Fig. 16.

Both the single-robot and joint CTMC times typically under-
estimate the simulation times, suggesting some congestion ef-
fects are unmodelled. The congestion-aware framework makes a
number of modelling assumptions, such as the use of congestion
bands and PTDs to model action durations. During planning we
consider the congestion level at the point a robot joins an edge.
However, other robots may join/leave an edge after this point
during execution. Further, we do not distinguish between direc-
tions of congestion, or consider the proximity of other robots
on an edge. The PTDs may also be erroneous, as distributions
are generalised across edges of the same length. Despite this,
in many cases the predicted expected times are close approx-
imations of the simulation times. This shows how the PTDs
and PRT provide an effective approximation of congestion.

X. CONCLUSION

In this paper, we have presented a congestion-aware frame-
work for multi-robot planning under uncertainty. We synthesise
policies using LRTDP-TVMA on single-robot TVMAs that
explicitly capture the effects of congestion. By modelling
navigation durations probabilistically, the policies we synthesise
are resilient to previously observed, but not explicitly modelled,
sources of delay. Further, route CTMCs can be used to predict
execution-time robot performance. Though we have focused
on multi-robot navigation tasks under uncertain travel times,
our framework can be adapted to solve any problem where
multiple robots must coordinate under temporal uncertainty.
In future work, we will consider planning for collaborative
meeting tasks under congestion, and how we can relax the
sequential planning assumption to build more accurate planning
models. Moreover, we will enable robots to re-plan online if
something unexpected occurs during execution.
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Fig. 16. Box plots showing the time taken for each robot to reach its goal in simulation. Green circles show the expected time value computed on the CTMCs
produced by Algorithm 2. Blue circles show the expected time value computed by sampling through the joint CTMC. Fig. 16a - 16f show results for problems
0-5 respectively, where the problem number indicates how many robots were forced to travel through one of the tunnels in the map in Fig. 1.
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