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Abstract

This paper introduces a control concept for motion generation of redundant robots based on combinations of movement
primitives (MP). It addresses the question of how to create continuous and smooth sequences of actions or transitions
between different motion skills while avoiding the necessity of recurrent planning. MPs are defined on task coordinates and
modeled as dynamical systems with attractor behavior featuring additional signals to ease their coordination. Sequences
and transitions between skills are realized in a unified way as bifurcating dynamical systems based on continuous-time
recurrent neural networks. The neural output is used as activation signal for MPs. It is shown how the parameters of
these dynamical systems can be chosen to generate a desired behavior. First results are shown in a physical simulation
environment on a high-DoF robot with human-like upper body. The system can create smooth transients of MPs in
sequences as well as during changes of strategies, notably showing more than only local adaptation capabilities.
Keywords: adaptive control, movement primitives, dynamical systems

1 Introduction

Recent biological and neuroscientific studies suggest that
complex movement skills found in animals and humans
are combinations of motor primitives [1-3]. The notion
of such primitives spans from limb controlling attractor
dynamics located in the spinal cord to behavioral relevant
motions coded in the motor cortex. A growing body of lit-
erature is dedicated to analyzing how sequencing and the
selection of sequences might be represented by the nervous
system [4,5]. Results imply subconscious control of short
sequences, hierarchical organization, concurrent executing
on different levels, as well as continuous blending from the
selection of one action sequence to another.

In line with these findings, the present work suggests a sim-
ilar control scheme for robot motion skills. Non-primitive
skills are to be composed by blending and sequencing of
primitive motions, called movement primitives (MPs) in
the following. The goal of the presented work is to im-
prove the state of the art by allowing: smooth transients
between MPs; adaptive sequences of MPs including concur-
rent execution; automatic and continuous transient of ac-
tion sequences without the necessity of repeated planning;
recovery from disturbances and errors on all levels of the
control system, going beyond only local adaptation. Both
low-level MPs and higher level, coordinating control units
responsible for sequencing and arbitration will be repre-
sented by dynamical systems.

The following chapter will briefly introduce the concept of
a movement primitive and how it is modeled in this work.
Chapter 3 presents the main focus of this paper, namely

how MPs can be coordinated to generate desired skills. It
is shown how the suggested neural dynamics can encode
sequences as well as continuous switching of skills based
on perceptual feedback. The experimental results of Chap-
ter 4 will illustrate the functional principles of the proposed
methods. The paper closes with summary and outlook.

2 Movement Primitives as
Dynamical Systems

A movement primitive as it is understood in this paper is
a unit generating control commands in task or joint coor-
dinates to implement an elementary action, e. g. a reaching
motion towards an object. One MP does not necessarily af-
fect all degrees of freedom of the robot. This work utilizes
dynamical systems (DS) defined on the MP’s state space as
generation methods for control commands:

y = f(y7pDS)

where y = s(x) is a subset of the full state x relevant
for the MP, and ppg is a parameter vector describing the
behavior of the DS. There are various benefits of this ap-
proach: due to the inherent state feedback, DSs are robust
against disturbances or inaccuracy of sensors; most models
are compact and have low computational cost for progres-
sion; DSs show good generalization capabilities; depend-
ing on the model used, DSs are time invariant.

There is an increasing number of examples of using DSs
for motion representation to be found in literature. One



of the most prominent approaches are the Dynamic Move-
ment Primitives (DMP) [6]. Based on Gaussian blending of
simple attractor dynamics, they use an additional canonical
system to represent progression. Other approaches include
the usage of GMM [7], SEDS [8], HMM [9], or RNN [10,11].
It is not the intention of this work to find a novel DS rep-
resentation for MPs. Any of the models mentioned above
can be used. Rather, in addition to the motion generating
DS, the interface of a MP is extended: Beside the current
state, each MP receives an activation signal a € [0, 1] that is
used to scale the outgoing control command. Furthermore,
a prediction y of the MP’s state vector will be generated,
using the current state and control command. It is used
to calculate a prediction error p reflecting the difference
of what is observed and what the MP is expecting to hap-
pen. Finally, each MP generates a goal distance g € [0, 1]
and a responsibility value r € [0, 1] based on the current
state. These MP signals p, g, and r can be interpreted as
pre-processed (from the MP’s point of view) perceptual in-
formation and are used to influence higher level activation
dynamics as shown in the next chapter.

The described MPs work independently of the underlying
robot controller (position-based, torque-based, ...). For
the experiments of this work, the kinematic task space con-
trol commands generated by the MPs are mapped to joint
velocities using a resolved motion rate controller includ-
ing null space optimization. Which task coordinates have
to be considered depends on the output of those MPs that
are currently activated.

The choice of task coordinates for a given MP can heav-
ily influence its generalization capabilities and re-usability.
For instance, while grasping an object the end-effector
pose can be controlled relative to the object’s frame in-
stead of using global or robot-local coordinates. As a re-
sult, the motion is independent of the object pose and the
robot’s kinematic layout. Disturbances to the end-effector
or object pose can be compensated directly by the DS. By
defining the DSs on such relative coordinates, no additional
parameters have to be passed to MPs. The activation a re-
mains the only input. Further details on choosing suitable
frames of reference and their biological plausibility can be
found in [12].

As an example, consider a MP executing a reaching move-
ment towards an object as preparation for grasping. Its DS
controls the end-effector within the coordinate frame of the
object. The goal distance g can be set to the distance of
hand and object, normalized by the reaching range of the
robot. Based on the object position in robot-local coordi-
nates, the responsibility r can capture the working space
of the robot, e. g. by approximating it using a GMM. The
MP would then express responsibility only if the object is
located within reach. Finally, the MP would assume the
object to remain stationary by setting the predicted object-
relative end-effector pose to §y = y+ At-y, where At is the
step length of time-discrete control loop. This prediction
results in large disturbances of the object or end-effector
pose leading to a large prediction error p.

3 Coordination of
Movement Primitives

Following the findings in neuroscience as stated above,
motion skills of increasing complexity shall be achieved
by blending and sequencing of MPs. This is done by gen-
erating a continuous stream of activation signals a. Such
a stream can represent a sequence by parallel and serial
blending of MPs. But it should be possible to influence
the activation stream, e.g. to recover from errors or to
smoothly blend to another sequence of actions.

In this paper it is assumed that all MPs and skills are either
designed or already learned by imitation or experience. It
is not the intention to create novel combinations of MPs
by e. g. logical planning. But the control system should be
able to blend between already known MPs and skills based
on sensory feedback. The skill representation itself should
allow adaptation to changes in the environment. The ne-
cessity of having to re-plan constantly should be avoided,
as planning tends to be slow, neglects experience from sim-
ilar, previous situations, and is not biologically plausible
on the subconscious level of behavior generation.

One possible way to represent skills and strategies are fi-
nite state machines (FSM). While being easy to design and
understand, FSMs have several drawbacks, such as the need
to explicitly define every transition, discrete switches be-
tween states, or dependencies on thresholds. Also, it can be
difficult to implement learning or continuous, non-discrete
adaptation and optimization and to synchronize concurrent
flow of transitions.

Instead of FSMs, this work suggests to use a DS approach
to generate continuous flows of MP activations and thus
representing motion skills. Constant feedback of sensor
information results in bifurcation of these dynamics, thus
generating smooth transients between MPs. This mecha-
nism can uniformly create sequences as well as transitions
of strategies, e. g. for error recovery. Furthermore, such an
“activation dynamics* is wrapped in the same interface as
the MPs described in Chapter 2, i.e. having an activation
input and calculating signals p, g, and r. In this way, high
level skills can recruit lower level skills as well as MPs,
creating a hierarchical, homogeneous control system.
Some approaches using a DS representation to activate con-
trol units can be found in literature. For instance, the
behavior-based control community adapted this idea us-
ing specialized competitive dynamics to arbitrate behav-
iors [13,14]. Other work encodes MPs as well as their co-
ordination as single recurrent neural networks [10]. While
this method allows for simultaneous learning of MPs, se-
quences, and expected perceptual feedback, it is not sure
how well such monolithic systems will scale. Also, it is
difficult to interpret the inner workings of the network.

A few approaches use neural fields [15] as modeling tool
for activations. While they are suited best to stabilize val-
ues of a continuous metric as in low-level direction com-
mands or cognitive tasks, activated pools of neurons at a



certain position in the field can also be used to represent
the activity of a discrete MP [16,17]. Recently, there have
been attempts to encode action sequences as DSs based on
neural fields [18]. While this approach is promising, the
suggested system using a simple ordinal dynamics for rep-
resenting serial order lacks some of the desired capabili-
ties, . g. error recovery by strategy transitions.

3.1 Activation Dynamics

While the representation of activation dynamics used in
this work was inspired by neural field formulations as cited
above, it neglects the field characteristics. As the activa-
tion of individual MPs is to be determined, a continuous
field with fixed lateral influence is not required. Instead,
a neural dynamics as in continuous-time recurrent neural
networks (RNN) is used as it can model similar beneficial
characteristics, like the possibility of conditioned selection
by pre-activation based on sensor data, or inherent hystere-
sis but still fast behavior in case of large stimuli [19].
Each neuron of the RNN represents one of the MPs con-
trolled by the activation dynamics. The dynamics of the
potential u; of neuron ¢ follows the equation

T = —u; + h+wo - fo(u;)+s; (D

with time constant 7, resting level A < 0, self-excitation
weight wy, and additional stimulus or inhibition s; (see
below). The output of a neuron f,(u;) is used as activa-
tion value for the corresponding MP. As output function,
the logistic function is used, with 8 defining the steepness
of the sigmoid:

1

.fsigmoid(u> == fﬂ(u) == W

(@3]

The neural dynamics defined by Eq. 1 and 2 show a bi-
stable behavior that is essential for its use as MPs activa-
tion dynamics. It allows neural activity that was initiated
by time-dependent stimuli to become self-sustained in the
absence of external input signals. Only large excitatory
or inhibitory input will destabilize one of the fixed points
and trigger a transient between resting level and activation
level. Thus, the neuron also exhibits filtering and hystere-
sis properties.

s =

— -1
— —2/3
— 13

— 1/3
— 2/3
—1

u
(=}
T

Figure 1: Phase plot of neuron potential for various stim-
uli. Top: Eq. 1, bottom: Eq.3 (h = —1.5, wo = 3, 8 = 3).

In case of no external stimulus, the two stable fixed points
occur at the resting level h and at h+wy, with the weight of
self-excitation normally chosen as wg = —2 - h to achieve
symmetry of fixed points. Figure 1 (top) illustrates the
change of neuron potential given different external stim-
uli. The zero-crossings with negative gradient of each line
indicate stable fixed points.

External input s; shifts the fixed points of the neural dy-
namics. Very high or low values enlarge their distance
and thus can increase transition time when the stimulus
changes. To avoid this, the Eq. 1 can be adapted to

TU; = —ui—l—h—&-wo-fg(ui)

(1= folus)) - si,
" {fo(ui) © 8i,

=)
s; <0

This results in qualitatively similar behavior, but con-
fines the location of the stable fixed points to the interval
[h, h + wp], as illustrated in Figure 1 (bottom). It is a
drawback of this variant that the scope for pre-activation
(or pre-inhibition) of a neuron is reduced. Both Eq. 1 and
Eq. 3 were used for experiments in this work.

The external stimulus s; of Eq. 1 and Eq. 3 includes the
recurrent influence from other neurons and amounts to

§; = askill (base excitation) (4)
—cp - Z gj (goal distance term)  (5)

JER:
—e - Z fo (ug) (inhibition term)  (6)

keZ;
—co-(1—my) (responsibility)  (7)
— 3 p; (prediction error)  (8)

Further terms consider the corresponding MP’s responsi-
bility r;, prediction error p;, and requirements (in terms of
other MP’s goal distances g;). In addition, the activation
askin € [0, 1] of the controlling, high-level skill containing
the activation dynamics is added as base excitation. R; de-
scribes a set of indices of MPs that are preceding MP ¢, and
7, a set of indices of MPs inhibiting MP %.

Considering the knowledge about the bifurcation behavior
of Eq. 1 or 3, it is not difficult to find suitable parameters
c[ to generate the desired behavior. For instance, given
h = —1.5, wy = 3, and § = 3, the upper (lower) fixed
point is destabilized for inputs s; < —0.48 (s; > 0.48).
With a full base excitation of agy = 1, setting parameter
¢o = 1 would result in the neuron to transition into the ac-
tivation level for a responsibility of ; > 0.5, and it would
sustain that state even if the responsibility drops to Zero.
Similar considerations help to find the other parameters.

3.2 Encoding Sequences and Arbitration

Using the lateral influence and additional stimuli, se-
quences and transitions between sequences can be



achieved. In sequences, connection weights inhibit a neu-
ron’s activation if subsequent neurons are activated. Selec-
tion between options is accomplished by mutual inhibition
of neurons representing different skills or sequences. Se-
lecting these inhibition schemes is done by including the
appropriate indices of inhibiting MPs or activation dynam-
ics in Z; (Eq. 6). If the currently active skill is inhibited by
e. g. a large prediction error (Eq. 8), the next best skill will
be able to get active. “Next best” in this case corresponds
to the neuron with the highest pre-activation, i. e. with low-
est prediction error or highest responsibility value over the
preceding timesteps.

Beside the inhibition term, encoding of sequences makes
use of the goal distance values. A MP can be inhibited as
long as preceding MPs are not close to their goal (Eq. 5).
The goal distance is not necessary an Euclidean distance,
but can be an arbitrary distance measure as the state of a
MP could for instance also include force values.

4 Experimental Results

First results of the presented control concept are based on
reach-and-grasp experiments within a sophisticated physi-
cal simulation environment. The utilized robot is equipped
with a human-like upper body, two three-finger hands, and
features a total 38 degrees of freedom. It is placed before
a table and has to reach for a ball which can be disturbed
by placing it to arbitrary position or by setting a horizon-
tal velocity (Figure 2). The robot is assumed to be able to
perceive the location of the ball and can measure various
touch, force, and torque information.

Figure 2: Screenshot of the simulation environment

The control hierarchy used for the experiments is shown
in Figure 3. All low-level MPs (gray boxes) use linear at-
tractor dynamics on various task coordinates, e. g. relative
hand-object transformation (X LeftPG-GB0). The high-
level control units (red boxes) make use of the activation
dynamics as described in the previous chapter. Green ar-
rows indicate activation signals, blue arrows depict task
commands.

The implementation for the experiments below uses Eq. 3
for updating the neuron potentials. The parameters used
are resting level h = —1.5, self-excitation wy = —2 - h =

3, sigmoid function steepness S = 3, and time constant
7 = 0.1. The factors governing the stimulus term are set
tocg = 0.5, ¢4 = 4, co = 2, and c3 = 4 for all involved
activation dynamics.
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Figure 3: Control hierarchy (green box: task coordinates,
gray box: low-level MPs, red box: activation dynamics)

4.1 Undisturbed Grasping Sequence

A closer look at the grasping skill Left/Frontal Power Grasp
GBO shall illustrate the inhibition and requirement sets R ;
and Z;. This activation dynamics controls five low-level
MPs (right-most gray boxes of Figure 3) and organizes
them as a flexible sequence to achieve object grasping. Ta-
ble 1 lists the MPs as well as the corresponding inhibition
and requirement sets. An “x” denotes that the index of
that row’s MP is an element of the set. For instance, R;
contains the indices 0 and 2, denoting that the movement
to the final grasping pose should only be executed if the
goal distance of Frontal Pre-Grasp and Power-Grasp Open
is small, i.e. if the pre-grasping pose is reached and the
robot’s hand is opened. Similarly, index 3 within Zy indi-
cates that motion of opening the robot’s hand is inhibited
while closing it.

Name of MP RoR1R2R3Ra ToTh Io I3 1y
0: Frontal Pre-Grasp - x - - - - - - - -
1: Frontal Grasp - - - X X X - - - -
2: Power-Gr. Open - X - - - - - - - -
3: Power-Gr. Close B ¢ R G
4: Lift - - - - - X X - - -

Table 1: Inhibition and requirement sets for Frontal Power
Grasp GBO (the “Left/” prefix has been skipped).

Figure 4 visualizes the mechanisms of the activation dy-
namics during a grasping sequence without disturbances.
The top-most plot depicts the vertical position of the ball
that is to be grasped. It is lifted from the table top start-
ing at t ~ 5.1 sec by the Lift MP. The remaining four plots
show (from top to bottom) the goal distances, stimuli, neu-
ron potentials, and output values of the five controlled MPs
or their corresponding neurons within the RNN. The neural



output values are directly used as activation signals for the
commanded MPs.

At t =~ 0.8sec, the activation dynamics of the grasping
skill is activated by higher levels of the control hierarchy,
as can be seen by the increasing stimuli for all five neurons
caused by the base excitation (Eq. 4). For both the Pre-
Grasp and the Open MPs the stimulus is sufficiently high
to destabilize the lower stable fixed point of the neural dy-
namics, resulting in a smooth transient to the higher fixed
point and thus to an activation of the MPs. The stimulus
of the Open MP is a bit lower because of its responsibil-
ity definition (Eq. 7) and causes a slower increase of the
neuron’s potential.
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Figure 4: Inputs, neuron potentials, and output values of
the grasping skill’s RNN without external disturbances.

The decrease of the two MPs’ goal distances also decreases
the inhibition on the Grasp MP, allowing its potential to
raise (Eq. 5, see also Table 1). This in turn causes an inhi-
bition of the Pre-Grasp MP that is strong enough to lower
its potential back to below resting level (Eq. 6). Such an
interaction of excitation by decreasing goal distance of the
preceding MP and inhibition by increasing activation of a
subsequent MP is typically used for sequence encoding.
Similar interplay is taking place for the succeeding parts
of the sequence, namely the grasping of the object by clos-
ing the robot’s hand, and lifting the object from the table.

The Close MP’s goal distance value exhibits some noise as
the simulated measured grasping force is part of the goal
distance calculation.

The activation dynamics shows the ability to generate
smooth transients between MPs during progressing a se-
quence. As can be seen in the example above, also paral-
lel activation of multiple MPs is supported. Local adap-
tation of disturbances is handled by the low-level MPs
themselves, e.g. small shifts of the object during grasp-
ing would be compensated by the DSs of the Pre-Grasp
and Grasp MPs. Further adaptation takes place within the
sequence itself: If for instance the object slips from the
robot’s hand, the Close MP will indicate this with a high
prediction error as it predicts a suitable grasping force
when the hand is closed. The prediction error will self-
inhibit the MP (Eq. 8), causing the sequence to re-enter at
an earlier point resulting in a re-grasping behavior.
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Figure 5: Transitions between skills for grasping a station-
ary ball and for stopping a rolling ball. The top two plots
visualize the composition of the stimuli as in Eq. 4-8.

4.2 Transition of Skills due to Disturbance

This experiment illustrates the transition between skills
caused by large external disturbances. It involves two
skills, namely grasping a stationary ball (Grasp) and stop-
ping a rolling ball by intercepting its trajectory with the



robot’s hand (Stop). As shown in Figure 3, these skills are
controlled by a higher level competing activation dynamics
with mutual inhibition of all neurons. Figure 5 visualizes
a situation where the robot is already reaching towards the
ball lying on the table. At ¢ ~ 0.6 sec, the ball is disturbed
by adding a horizontal velocity as can be seen from the
bottom-most plot showing the horizontal position of the
ball. As the grasping skill predicts an approximately con-
stant position of the ball, its prediction error increases. The
prediction error values are noisy as artificial noise is added
to the simulated sensor information to test robustness. The
increase of prediction error results in self-inhibition (Eq. 8)
of the corresponding neuron (red ellipse in stimulus plot),
which again allows the ball stopping skill to be activated.
The latter predicts a target moving at medium velocity, so
its prediction error is low. As soon as the movement of the
ball is stopped at ¢t = 2.1 sec, the situation reverses and the
ball can be grasped again.

S Summary and Outlook

A control approach that continuously combines movement
primitives to motion skills has been presented. Dynamical
systems are used to model basic motion elements as well
as sequences and decision making. Besides local adapta-
tion, the suggested method is able to adapt to errors and
disturbances on a more global level by smooth transients
between sequences and skills.

Future work will include imitation learning of MPs and se-
quences as well as the analysis of scenarios including force
feedback with application on physical robots.
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