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Abstract— In this paper we present a new robot control and
learning framework. By integrating previously presented as
well as new methods, the robot is able to learn an invariant
and generic movement representation from a human tutor.
We argue that in order to apply such generic representations
to new situations and thus create a flexible system, the use
of interaction is beneficial. The interaction is based on a
kinematically controlled model of a human tutor, which is
used as a model-based filter and also for recognizing postures
that influence the interaction. In addition, a new movement
segmentation scheme is presented that is based on correlating
movements by the tutor’s hand with the salient objects in the
scene. The focus of this paper is on the interactive learning
aspects of the system and particular emphasis is given to an
experiment in which the humanoid robot ASIMO learns from
a human tutor. The system includes extensive generalization
capabilities that result from an online adaption of the robot’s
body schema and the exploitation of inter-trial variance from
multiple demonstrations. This enables the robot to reproduce
the movement in new situations. For example, a stacking task
that the tutor performed one-handed can be executed bi-
manually by the robot.

I. INTRODUCTION

In the field of robotics, one of the main goals is to equip
a robot with human-like cognitive abilities that allow it to
learn from a human tutor. By achieving this we would make
a great leap forward, because it would lead to systems which
are open to new tasks and a wide range of users.

One of the key points of such learning abilities is gener-
alization, in the sense that the robot extracts the important
information from a demonstrated movement. In recent years,
a lot of progress has been made in this field.

The authors of [1], propose to learn and represent move-
ments using Dynamic Movement Primitives (DMPs). With
these DMPs, it is possible to dynamically adapt a movement
to slight changes in the environment. On a more symbolic
level, the system from [2] learns the structure of a com-
plex pick and place task and generalization is achieved by
representing alternative behaviors in this structure. In [3],
even the concept of affordances has been used to teach a
robot new tasks and represent them in a generic way. In [4],
generalization is mainly achieved by using a probabilistic
representation with Hidden Markov Models and learning
from multiple repetitions.
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Recently, there is also a trend to combine different learning
approaches together with interaction with a human tutor. A
cognitive architecture for this purpose is presented in [5].
However, learning is performed in an offline Programming
by Demonstration approach. In [6] a framework for teaching
a robotic system sequences of picking and placing objects is
presented. A tutor uses pointing gestures and speech to guide
the robot through the task. Also the authors of [7] exploit
such social cues to speed up the learning process within a
probabilistic imitation learning framework.

However, there is still something missing for true flexi-
bility. A robot needs a way to apply its generic movement
representation to specific situations. This means that the ad-
ditional degrees of freedom achieved through generalization
need to be bound to the current situation.

In this paper we propose a way to bridge this gap. We
present a new framework for robot control and imitation
learning. This framework integrates previous work as well
as new elements that allow a humanoid robot to learn and
generalize movement tasks from demonstrations of a human
tutor. To apply its learned tasks to specific situations, the
robot exploits the interaction with the tutor. This results in
a very flexible system where the tutor is not just a passive
observer of the robot’s actions, but is able to actively guide
the robot. The focus of this paper is on the interactive
elements and how they are used to bind degrees of freedom
of the system to specific situations. In the directly related
paper [8], new methods for achieving these degrees of
freedom by generalization and invariance are presented.

The remainder of this paper is organized as follows.
Section II provides an overview of the complete framework
and explains how the elements work together. Interaction is
a central element that influences both, the learning process
and the movement reproduction. How, is explained in Section
III. We emphasize the importance of the interaction by pre-
senting experiments in Section IV. It is shown how the robot
interacts with the tutor in order to learn a new movement task
and apply it to different situations. We conclude the paper
in Section V.

II. ROBOT CONTROL AND LEARNING
FRAMEWORK

The framework presented in this paper is depicted in Fig-
ure 1 and consists of three hierarchical layers with modules
grouped into a perception and a control side as well as
interaction modules as central elements. Within this section
we explain the framework layer-wise from the bottom to the
top.
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Fig. 1. Structure of the robot control and imitation learning framework
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Fig. 2. 3D visualization of the Persistent Object Memory

A. Reactive Layer

The bottom layer corresponds to a reactive control system.
Information received from simulation or the on-board sensors
of the robot are processed in the Persistent Object Memory.
It can be seen as the robot’s perceptual interface to the world.
All sensory input of the robot is subsumed in this memory
and filtered consistently using a mixture of low-pass, median
and model-based filters (for the latter, see also Section III-A).
In the concrete case of the experiments, presented in Section
IV, the input data comes from the ego-motion-compensated,
on-board stereo vision system of the robot.

As the name suggests, the main task of the Persistent
Object Memory (Figure 2) is to handle information about
detected objects. The shapes of the objects are retrieved from
a database of known objects and matched to the perceived
input. In addition, a confidence value is associated to each
object that depends on when the object was last observed. It
is used to increase the robustness of the system.

The objects are represented together with the robot’s body
parts within one single kinematic tree. This makes it possible
to define controllers for the robot that operate directly on
observed objects. The motion control is based on an inverse
kinematic control scheme presented in [9] and based on [10].
This control scheme already allows a very flexible task-
level control of the robot by representing movements within
egocentric or allocentric frames of reference. But even more,
there are two enhancements, presented in the related paper
[8], that further increase the flexibility.

On the one hand, the involved body schema of the robot
(i.e., the kinematic configuration) can be reconfigured online.
This is especially useful for tasks such as grasping, where
after a successful grasp the object is attached to the robot’s
effector. The object can then be controlled like if it is a part
of the robot and any optimization and planning process takes
this into account.

On the other hand, the concept of linked objects is
introduced. They are used to decouple the task descriptors
from physical entities (i.e., specific object identities) in order
to decrease the number of required task descriptors. By
modifying the reference of a linked object, it is possible
to achieve different robot behaviors without switching the
controlled task.

B. Movement Primitive Layer

On top of the reactive layer, imitation learning capabilities
are achieved. This learning is based on previously developed
methods, presented in [11], which will be explained briefly
within this section. The input of the learning system however
is based on a new interaction-based segmentation method
that results in object trajectories demonstrated by a human
tutor. This segmentation is described in Section III-C.

In the first step, the information coming from several
demonstrations of the same task is projected into the task
space in which the movement should be learned. Although
we already presented an approach to choose such task spaces
automatically [12], we simplify the scheme for the experi-
ments in Section IV by selecting the task space manually.
The use of task spaces is beneficial, because it accounts
for an invariance in the movement representation (e.g., tasks
described in relative frames of reference can be executed at
various absolute positions). The demonstrated trajectories,
represented in task space, are stored in the Observation
Memory of the framework.

After the different demonstrations have been acquired, we
need to account for temporal distortions. This is done by
applying Dynamic Time Warping, which results in meaning-
ful spatial variance information that can be exploited later
during the movement reproduction. To encode the mean and



covariance information of the task we apply multivariate
Gaussian Mixture Models. They are trained using a common
Expectation-Maximization algorithm with K-Means initial-
ization, leading to a compact, probabilistic representation,
which is stored as a movement primitive within the so-called
Movement Primitive Memory.

On the control side, these movement primitives can be
used to initialize and trigger an attractor-based movement
optimization that adapts the movement to a new situation.
This is necessary, because the movement representation is
situation-independent and does not account for robot-specific
constraints (e.g., joint limits, self-balance) or environmental
constraints (e.g., collisions). To handle these aspects, we
incorporate a gradient-based trajectory optimization scheme
which has been already presented in [13]. It operates on
an attractor-based trajectory generation that describes the
task space trajectories with linear attractor dynamics. These
dynamics command the motion control system on the re-
active layer. In principle, the sequence of attractor vectors
is optimized so that cost functions, corresponding to the
above mentioned constraints, are minimized. Besides the cost
functions for collision avoidance, joint-limit avoidance and
so on, a similarity criterion is incorporated that penalizes
deviations from the learned movement, but with respect to
the variance information.

C. Sequence Layer

To achieve complex tasks it is not sufficient to con-
trol the robot based on movement primitives only. The
sequence layer therefore allows to combine learned as well
as predefined movement primitives into complex sequences.
The movement primitives are interconnected with the help
of transitions that are triggered by internal (e.g., a robot
movement converged to a given target) or external events
(e.g., the tutor raised the hand as a stop signal). Such
sequences ease the modeling of complex movement chains
and the augmentation with learned movements. Furthermore,
the system is able to predict and plan across the movement
primitives in such chains and command them sequentially to
the lower layers.

III. SCENE INTERPRETATION AND
INTERACTION

In the previous section we presented an overview of
the robot control and learning framework. This framework
combines various methods that increase the invariance and
generalization capabilities of the system. When the robot is
asked to execute a learned task, these additional degrees
of freedom need to be bound to the specific situation.
We achieve this by including interactive aspects as central
elements in our framework. This creates a very flexible
system, because the tutor can shape the situation in natural
interaction with the robot.

A. Tutor Model

We assume that the robot normally interacts with a human
tutor. Therefore, the Persistent Object Memory also includes

a model of the upper body of a human tutor. The model is
controlled in task space (e.g., end-effector positions) using
an inverse kinematics control scheme based on [14]. For the
experiment presented in Section IV a skin color detector is
used to detect the positions of the hands and the head of
the tutor. This input is sufficient to control the model in a 9-
dimensional task space spanned by the Cartesian coordinates.

In our framework, the tutor model fulfills two tasks. First,
it is used as a model-based filter for the hands of the
tutor. Joint limits and joint speed limits prevent the body
parts of the tutor from moving unnaturally fast. Therefore,
movements are interpolated more realistically during phases
where the input is missing (e.g., because of occlusions).
Second, the model is used for recognizing postures (Section
III-B), which can trigger special transitions on the Sequence
Layer.

But, such a kinematically controlled tutor model can be
additionally useful. A common problem when relying on
vision input is the detection of hand orientations when
grasping objects. The hand is hidden behind the object, which
usually leads to a wrong estimation of the tutor’s pose. The
problem can be solved by aligning the grasp axis of the
tutor’s hands with the object’s major axis if the hand and
the object are close together. Two additional dimensions per
hand are then added to the task space to control the polar
angles of the hands (see [15] for the two-dimensional hand
attitude control). This results in a better estimation of the
posture.

Furthermore, a tutor model allows the prediction of inter-
nal states of the tutor. In our previous work [12] we already
showed that by defining cost functions, such as effort (torque-
based) or discomfort (based on joint ranges), we are able to
determine which elements of a movement demonstration are
important and which just result from the natural posture.
This work is based on findings about the mirror system in
humans, which claim that we employ our own motor system
for recognizing actions of other humans (see also [16]).

B. Posture Recognition

Based on the tutor model, presented in the previous
section, we use posture recognition to structure the inter-
action and for the actual communication with the robot.
It is especially used to trigger some transitions within the
sequences on the top layer of our framework. As an example,
in our experiments described later we used postures like
lifting one or both hands in order to command the robot
to execute movements with one or both hands. The same
postures were used to signalize the robot to remember or
forget a demonstrated movement task. By using postures
to define how a task should be executed (e.g., one-handed
or bi-manual), the invariance gained from the generic task
representation within task spaces is directly transformed into
flexibility of the whole system. Such postures are recognized
by continuously evaluating the positions of the hands relative
to the head of the tutor.
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Fig. 3. Calculating the velocities of the nearest points of two objects

C. Movement Segmentation

In section II-B it was already mentioned that the input of
the imitation learning system comprises a new segmentation
method. We exploit the assumption of an interactive scenario
with a human tutor in order to recognize when significant
object-related actions are performed.

We propose a new movement segmentation that is based
on correlative features between the tutor’s hand and objects.
The basic idea is that if an object and a hand are near to
each other and starting to move with the same velocity, the
object is most likely in the hand of the tutor and she/he is
manipulating the object actively. This marks the start of a
segment. The end of a segment is reached if both conditions
become invalid.

To calculate this, first the currently most salient object
and the hand are located. The Persistent Object Memory
holds information about the position as well as the linear
and the angular velocity of their center points. In addition,
the exact or approximate shapes of the object and the hand
are available. It is however insufficient to use the velocities
directly. The reason becomes clear for the example of a
human tutor manipulating a large stick. The center point of
the stick may be far away and moving fast if the tutor grasped
the stick on one side and turns her/his hand. Comparing the
velocities of the hand and the object would result in a large
deviation and not be recognized as moving similarly, which
is indeed wrong.

To overcome these problems, the correlation of the object
and the hand movement is calculated in the following way.
First, the nearest points P1 and P2 for the object and the hand
are calculated by taking the shapes of both into account (see
Figure 3). The correlation of their velocities is now calculated
for these points instead of the center points of the object and
the hand. For each point Pi, the velocity vi is the sum of
the linear velocity via and the outer product of the angular
velocity ωi and the radius of the point ri (see Equation 1).

vi = via + ωi × ri (1)

Now the correlation function f that consists of two terms is
calculated continuously (Equation 2). The vectors p1 and p2

relate to the position of P1 and P2, respectively.

f (p1,p2,v1,v2) =
1
2
·f1 (|p1 − p2|)+

1
2
·f2 (v1,v2) (2)

The value of the first term f1 depends on the distance d
between the two points (Equation 3). It switches softly from
Zero to One near the threshold c2, thus signalizing that the
hand is near the object. The switching is done by using the
Sigmoid function from Equation 4.

f1 (d) = ς (c1 (d − c2)) (3)

ς (x) =
1

1 + e−x
(4)

The second term f2 is similar to f1 but depends on the
velocities of both points.

f2 (v1,v2) = α (v1,v2) · ς (c3 (|v1 − v2| − c4)) (5)

The value of f2 increases if the difference of the velocities
of P1 and P2 is large, but only if the function α is larger
than Zero. This function depends on the absolute velocities
of both points in order to allow function f2 to contribute to
f only if the hand and the object are moving at all.

α (v1,v2) = ς (c5 (|v1| − c6)) · ς (c7 (|v2| − c8)) (6)

The values of function f during the segmentation follow a
trimodal distribution and can be tuned using the constants
ci. If the hand and the object are not moving or are not near
each other, then f becomes a value near Zero. If the hand
and the object are together, but not or only slightly moving,
f is around 0.5. If now the hand and the object are close
and their nearest points are moving into similar directions
with similar velocity the value of f rises towards One. This
behavior is very advantageous for the segmentation of dis-
tinct object movements by simply applying two thresholds.
The experiments in Section IV illustrate this in more detail.
For these experiments, the values of the constants and the
thresholds were chosen a priori.

D. Attention and Gazing

For human-robot interaction, an attention system and
the robot’s gazing behavior are essential elements. On the
one hand they allow the tutor to highlight important scene
elements (e.g., the objects that are involved in a task demon-
stration). On the other hand the robot gives feedback to the
tutor by gazing at what it “believes” to be important.

Usual attention mechanisms combine bottom-up and top-
down processing of sensory data (e.g., color images and
depth maps). Such approaches are presented in [17] and [18].

We apply a more object-related attention mechanism. In
our framework, a saliency value is associated with each
detected object. This saliency value has a temporal decay and
can be increased either by moving or shaking objects or by
pointing at them. Internally, a list of all objects is maintained,
sorted according to their saliency values and with a hysteresis
applied.

These saliency values define the gazing behavior of the
robot. A virtual gazing point is calculated according to the
confidence and saliency values of the detected objects. The
position of the gazing point pg is calculated according to
Equation 7. The vector pi corresponds to the position of
object i and scalar si to its saliency value. Only objects with



a confidence conf i that is high enough (larger than constant
cs) are involved in the calculation.

pg =
∑

i

pisiwi∑
i siwi

∀i : conf i > cs (7)

Additionally the factor wi is included that increases the
importance of objects that are near to the border of the field
of view. This leads to a behavior in which the robot tries
to keep all important (i.e., recently highlighted) objects in
its view. This reactive gazing behavior can be influenced by
elements from the top layer of our architecture. For example,
if the robot needs a response from the tutor, the weight for
the tutor’s head whead is increased. The robot then gazes at
the tutor and continuously tracks her/his head.

E. Attention and Movement Representation

The attention mechanism also directly influences the learn-
ing and reproduction of movements. These movements are
represented within task spaces that relate the most salient
object to the second-most salient one. This, together with the
concept of linked objects, leads to a more general representa-
tion of learned movements. In addition, this offers a flexible
way to control what the robot should do without changing
the underlying movement representation. For example, the
robot could have learned to put the most salient object on
top of the second-most salient one. By highlighting different
objects before asking the robot to execute the movement, the
tutor can define which objects are involved.

IV. EXPERIMENTS

In this section we present three real world experiments
with the humanoid robot ASIMO and the presented robot
control and learning framework. We want to emphasize how
the interactive elements in the system, on the one hand help
to learn a generic movement representation, but also on the
other hand allow to apply such learned movements to specific
situations. The first experiment shows the results of the
segmentation algorithm from Section III-C and the second
experiment demonstrates the completely interactive teaching
of a movement to the robot. The third experiment shows how
the robot can exploit learned variance information to adapt
its movement to new situations. The setup (see Figure 4 or
5) is the same for all experiments. ASIMO is standing half a
meter away from a table on which object-related movements
are demonstrated. The robot is observing the scene with
its on-board stereo vision system. Color-based segmentation
allows it to track the 3D position and 1D orientation of the
red and the green object as well as the head and the two
hands of the tutor. The whole interaction is modeled using
a complex sequence of movement primitives and transitions
on the highest layer of our framework.

A. Segmentation

Figure 4 shows the principle of the segmentation based on
the hand-object correlations. One can see that the demonstra-
tion can be segmented by simply applying two thresholds for
the start and the end, respectively. When the tutor grasps the

object the value of f (Equation 2) rises to about 0.5, not yet
starting a segment. Then, the object is moved and the term of
Equation 5 contributes to the value, increasing it to above the
start threshold. The segment endures until the tutor finally
releases the object, because this leads to the value falling
below the end threshold.

The proposed method provides a good way to segment
object-related movement in a natural way. Furthermore,
the assumptions about the hand-object relations reduce the
probability of over-segmentation.

B. Typical Tutoring Scenario

In the second experiment a typical interaction cycle during
the teaching of a robot is presented. For this experiment,
the task of the robot was to learn to put one object on
top of another. The robot is able to learn and generalize
this to a new situation. Although the movement was seen
performed with one hand only, the robot is able to fulfill
the request of the tutor to reproduce it with two hands.
Figure 5 shows snapshots of the scene during the interaction
and a qualitative analysis of the human-robot interaction,
highlighting the interplay between internal elements.

In the beginning, the tutor catches the attention of the
robot by tapping on the object that will be involved in the
next steps. The robot recognizes this and changes its gazing
behavior, which indeed is a hint for the tutor that the robot
is now attentive. The tutor starts to demonstrate the task,
which the robot internally segments using the mechanism
of the previous experiment. After the robot recognized the
end of the demonstration it is gazing at the tutor’s face
and awaiting a response. By raising his left hand, the tutor
confirms that this was a demonstration of interest and the
robot should learn it. The robot recognizes this and reverts
to its normal gazing behavior. To abbreviate this example,
the tutor demonstrates only once, but it is possible to repeat
the previous steps with additional demonstrations.

After the demonstration, the tutor puts the objects on
the robot’s side of the table and asks the robot to learn
and reproduce the task with two hands by raising both
hands. This starts several processes in parallel. First, the
representation of the objects in the Persistent Object Memory
is being frozen. This is necessary because the robot is not
able to see the objects during manipulation. Second, the
learning process is started, which performs the learning steps
described in Section II-B. Third, the robot starts walking
towards the table and grasps the objects. Note that the
learning is done in parallel with the robot’s walking and
grasping movements. This is also true for the prediction of
the future state when the robot will have both objects in its
hands and for the optimization of the movement from this
state on.

Sometimes it may happen that the robot predicts that the
movement is too difficult to be executed properly. This may
result from a predicted violation of joint limits or collisions.
In our example we show such a case. After the robot grasped
the second object, it gazes at the tutor’s face and tells him
verbally that the movement may be too difficult. The tutor
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Fig. 5. Illustration of the interaction and the interplay between internal elements during an experiment

now has to decide if the robot should try it anyway or refrain
from it. In our example the tutor raises his left hand meaning
the former. The robot now reproduces the task successfully,
puts the objects onto the table and retreats from the table. The
objects are unfrozen again and the robot can engage in further
interaction. Note that during the grasping and the releasing
of objects the body schema of the robot changes too. This
is one of the generalization features that allows the robot to
actually perform the movement bi-manually, although it has
seen the demonstration only one-handed.

C. Exploitation of Variances
In another experiment (Figure 6), the robot is asked to

reproduce the same movement with one hand. This is done
in two different situations. Firstly, without any obstacle and

secondly with a yellow box blocking the direct path of the red
object. In both cases the tutor highlighted the green and the
red object in before, so that the generic representation of the
stacking movement is applied to those two. The movement
itself was demonstrated multiple times instead of only once.
This leads to more variance in the demonstration. During the
reproduction, this variance is exploited by the robot to avoid
a collision with the yellow box. The figure shows that the
robot is still able to fulfill the task. In fact, the experiment
shows that generalization is not only achieved by learning
the task in object-related task spaces, but also by using the
probabilistic representation with Gaussian Mixture Models.
This is explained more detailed in [11].



Fig. 6. One-handed imitation with and without obstacle

V. CONCLUSION

We presented a framework that allows a robot to learn
and reproduce movement tasks in interaction with a human
tutor. This interaction is important in two ways. On the
one hand, we use it to generate degrees of freedom in the
movement representation, which improves the generalization
capabilities of the robot. On the other hand, it is used during
the movement reproduction to map the degrees of freedom to
specific situations. In particular, our experiments show that
interaction leads to flexibility in the following ways:

• Saliency and the robot’s attention are used to determine
the objects from which the robot should learn.

• The same features are used to define which objects
should be manipulated by the robot.

• The tutor’s postures “tell” the robot how to reproduce
a learned task (e.g., one-handed or bi-manually).

• By introducing variance into the demonstrations, the
tutor implicitly allows the robot to avoid obstacles and
still perform the task.

• If there is uncertainty about the correct way to reproduce
a movement, the robot can verbally ask the tutor for a
decision.

In addition to the interactive elements, our framework in-
corporates a flexible robot control approach that allows to
define very complex task spaces. This, in turn, allows to learn
tasks as generic representations based on object relations.
Furthermore, the framework includes online body schema
adaptation and the concept of linked objects, which increase
the generalization capabilities of the system even more.

In this paper, we particularly focused on interaction to
achieve flexibility. In future, we will investigate this further,
but also try to increase the autonomy of the system, for
example by including higher-level planning approaches.
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