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Abstract In this paper we present a new robot control

and learning system that allows a humanoid robot to
extend its movement repertoire by learning from a hu-

man tutor. The focus is learning and imitating motor

skills to move and position objects. We concentrate on
two major aspects. First, the presented teaching and

imitation scenario is fully interactive. A human tutor

can teach the robot which is in turn able to integrate

newly learned skills into different movement sequences

online. Second, we combine a number of novel concepts

to enhance the flexibility and generalization capabilities

of the system. Generalization to new tasks is obtained

by decoupling the learned movements from the robot’s

embodiment using a task space representation. It is cho-

sen automatically from a commonly used task space

pool. The movement descriptions are further decoupled
from specific object instances by formulating them with

respect to so-called linked objects. They act as refer-

ences and can interactively be bound to real objects.

When executing a learned task, a flexible kinematic

description allows to change the robot’s body schema

online and thereby apply the learned movement relative

to different body parts or new objects. An efficient opti-

mization scheme adapts movements to such situations

performing online obstacle and self-collision avoidance.

Finally, all described processes are combined within a

comprehensive architecture. To demonstrate the gener-

alization capabilities we show experiments where the
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robot performs a movement bimanually in different en-

vironments, although the task was demonstrated by the
tutor only one-handed.
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1 Introduction

One of the key abilities of a cognitive robotic system is

to extend its own movement repertoire by learning new

skills from humans. While in the early days of this re-

search field this meant mimicking movements of a tutor,

apparently this is not enough to improve the abilities of

a robot. More recently, work has consequently turned to-

wards researching methods for learning and representing

movements with the goal of generalization. The robot’s

target then is to learn the important and invariant as-

pects of movements and to apply this knowledge to new

situations.

One way of learning these important aspects is the

use of probabilistic methods. For example, Asfour et al.

(2006) present a method to learn arm movements from

a human tutor. Features that are invariant in multiple

demonstrations of the same task are recognized and

learned with Hidden Markov Models (hmms). The move-

ment is encoded using joint angles and the position and

orientation of the Tool Center Point (tcp). Also Calinon

and Billard (2008) present a system to learn a probabilis-

tic representation of a demonstrated task. There, the

variance information encoded in Gaussian Mixture Mod-

els (gmms) relates to different constraints of the task.

Furthermore, the probabilistic representation allows to

integrate social cues, such as speech and gaze to scaffold

the learning process. Eppner et al. (2009) use Dynamic

Bayesian Networks (dbns) as more general probabilistic
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models. In their system, the variances of task-level and

joint-level policies determine how accurate a motion

should be tracked by the robot. Another interesting ap-

proach for learning object movements in 2D space using

hmms is presented by Sugiura et al. (2010). Like us,

they are one of the few groups that include a selection

of feasible reference frames in their movement learning

process.

Instead of encoding movement alternatives proba-

bilistically, Ijspeert et al. (2003); Schaal et al. (2003);

Pastor et al. (2009) use Dynamic Movement Primitives

(dmps) to achieve robustness against spatial and tem-

poral disturbances. The efforts of Khansari-Zadeh and

Billard (2010) extend this work by combining a proba-

bilistic representation and dmps with an optimization
approach called seds. This optimization allows to coun-

teract possible instabilities of the dynamical system in

regions not covered by the demonstrations. Kormushev

et al. (2010) use information from the kinesthetic demon-

strations of a pancake flipping task together with the

power reinforcement learning approach introduced by

Kober and Peters (2009). With this, not only move-

ment trajectories are reproduced but also the stiffness

parameters of the robot can be adapted to successfully

reproduce the task.

A common difficulty for teaching movements to a

robot is the correspondence problem, which is the trans-
fer of movement skills to different embodiments. While

kinesthetic teaching circumvents this problem to some

extent, it is not applicable to every robot. Lopes and

Santos-Victor (2005) for instance address this problem

by projecting the observed movements into the tutor’s

frame of reference using a viewpoint transformation.
However, movement is represented and reproduced us-

ing a fixed mapping of visual input to the degrees of

freedom of the system. For mapping movements be-

tween different body configurations Acosta-Calderon

and Hu (2005); Hersch et al. (2008); Stoytchev (2003);

Nabeshima et al. (2006) investigated the concepts of

body schema and body percept. In Azad et al. (2007)

the problem is addressed with an intermediate kinematic

model, the so-called Master Motor Map.

For complex behavior of a robot it is not sufficient

to learn individual movement skills alone. They need

to be combined and sequentialized. For this, it seems

necessary to bridge the gap to a more symbolic repre-

sentation. Inamura et al. (2004) propose a probabilistic

framework based on Hidden Markov Models. Full body

movement skills are learned from a human tutor and a

symbolic representation called proto symbols emerges.

Having such a symbolic representation, methods and

frameworks like presented in Beetz et al. (2010); Nico-

lescu and Matarić (2006) can be used for planning more

complex movement sequences. Another possibility for

abstracting movements to higher-level primitives is pro-

posed by Lopes et al. (2007). They use the concept of

affordances to build up a general world model in which

effects of actions can be observed by the robot. The

robot therefore can not only learn the movement itself,

but also the effects that it should achieve.

For organizing learned and predefined movement

skills, Burghart et al. (2005) suggest a state machine

approach. Tasks are divided into subtasks that have

a goal and possible error states. Communication with

the human is used to solve errors. An alternative to

classical state machines is presented by Toussaint et al.

(2010). They propose a probabilistic framework to com-

bine movement and trajectory planning with higher-

level symbolic reasoning. Yamashita and Tani (2008)

are pursuing a different approach. They present a neural

network representation in which a functional hierarchy

of movement primitives emerges automatically. How-

ever, their focus is more on biologically plausible models

instead of a real-time interaction between tutor and
robot.

As learning always involves interaction between the

robot and the human tutor, most learning architectures

employ methods that allow a dialog between both. A

hybrid architecture to instruct a robot in grasping tasks

has been proposed by McGuire et al. (2002); Steil et al.

(2004). They incorporate active vision, gestural instruc-

tion and a dialog system and couple these elements with

a hierarchical movement generation system. Bohg et al.

(2009) also present a comprehensive architecture that

includes higher-level symbolic reasoning. Focus of their

work is grasp-oriented visual perception where they also

combine visual attention and different visual cues with

grasp planning and inference strategies.

Although many existing frameworks comprise so-

phisticated methods for movement learning and robot

control, their focus is usually very specific. They only

focus on single aspects and postpone the investigation of

a whole systems approach. We try to broaden the view

by efficiently combining multiple generalization concepts

into one framework. With this we give a robot the ca-

pability to learn as much as possible from the tutor’s

demonstrations and to perform the acquired movement

skill in different situations.

The architecture presented in this paper is based

on prior work in the area of imitation learning (Mühlig

et al. 2009a,b), movement control (Gienger et al. 2005),

and optimization (Toussaint et al. 2007). It follows up

on our recent publications (Gienger et al. 2010a; Mühlig

et al. 2010) and extends them by providing a more

thorough description of the system, by enhancing the

object representation with task-relevant feature points
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and by incorporating a mechanism to determine the most

appropriate task space into the learning process. We will

focus on learning and imitating object movement skills,

and concentrate on two major aspects in this work: First,

the presented system allows a human tutor to teach a

robot new object movement skills in interaction, and to

instruct it to imitate them in a variety of different styles

with varying objects in changing scenarios. Second, we

combine several concepts for generalization:

– We address the correspondence problem of transfer-

ring the demonstrated movement skills to different

embodiments using a flexible task space representa-

tion.

– Learned movement skills can be applied to different

situations using an efficient optimization scheme that

exploits probabilistic information.

– A flexible kinematic description allows to imitate

the learned skills in different styles by changing the

robot’s body schema online.

– Learned movements generalize over different objects
due to an object feature point representation and

the automatic selection of feasible task spaces.

The remainder of this paper is organized as follows.

In Section 2 we begin with a structural overview of

the learning and control architecture. The subsequent

sections explain the elements in more detail. Section 3

presents the perceptual elements of the architecture,

explains how the scene is interpreted by the system and

how interaction can be used to influence this interpre-

tation. Based on this scene representation, we perform

movement segmentation, task space selection as well as

movement learning, all explained in Section 4.

Subsequently, Section 5 presents how movement

primitives are sequentialized, optimized and executed

by the robot. Finally, in Section 6 we show two exper-

iments to highlight the key abilities of the presented

architecture. The paper is concluded with a discussion
and a brief outlook in Section 7.

2 System outline

The framework presented in this paper is depicted in

Figure 1 and consists of three hierarchical layers with

modules grouped into a perception and a control side.

Additionally, the framework includes interaction mod-

ules as central elements. Within this section we briefly

summarize the framework layer-wise from bottom to

top. The subsequent sections elaborate on the individual

elements in more detail.
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Fig. 1 System architecture overview of the presented robot con-
trol and imitation learning framework.

2.1 Movement Control Layer

The bottom layer corresponds to a movement control

system. Information received from simulation or the on-
board sensors of the robot are processed in the Persistent

Object Memory (see Section 3.1). For the experiments

presented in Section 6, the input data is provided by the

ego-motion-compensated, on-board stereo vision system
of the robot or a magnetic-field-based motion tracking

system.

The information on objects as well as the robot’s

body parts are represented within one single kinematic

tree. This makes it possible to define controllers for

the robot that operate directly on observed objects.

We incorporate a flexible inverse kinematics control

scheme, which allows to define tasks within egocentric

or allocentric frames of reference.

2.2 Movement Primitive Layer

On top of the movement control layer, imitation learning

capabilities are achieved. Task demonstrations of a tutor

can be recognized and segmented automatically using

a kinematic model of a human. This segmentation is

described in Section 4.1.

In the first step, the acquired trajectories from sev-

eral demonstrations of the same task are projected into
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the task space in which the movement should be learned.

While such task spaces are commonly predefined, we

employ methods for automatically selecting in which

task space a movement is represented best. Selecting an

appropriate task space is beneficial since it introduces

invariance into the movement representation (e. g., a

bimanual task described in relative frames of reference

can be executed at various absolute positions). The

demonstrated trajectories, represented in task space,

are stored in the Observation Memory.

The observed trajectories are then learned and stored

in form of movement primitives. In the presented frame-

work, the term movement primitive stands for a task-

level representation of a goal-directed movement with a

defined start and end condition and a fixed set of con-

trol (task) variables. These learned movement primitives

can be executed reactively or be subject to an optimiza-

tion procedure that respects additional constraints (e. g.,

collision avoidance).

2.3 Sequence Layer

To achieve complex tasks it is not sufficient to control

the robot based on single movement primitives alone.

The sequence layer therefore allows to combine learned

as well as predefined movement primitives into complex

sequences. The movement primitives are organized in

a hierarchical state chart and interconnected by transi-

tions that are triggered by internal (e. g., a robot move-

ment converged to a given target) or external events

(e. g., the tutor raised the hand as a stop signal). This

eases the modelling of complex movement chains and

the augmentation with learned movements. The pre-

sented system is also able to predict and plan across

the movement primitives in such chains and command

them sequentially to the lower layers.

2.4 Interaction module

The Interaction module plays a central role in the

presented framework. Through interaction a tutor can

demonstrate movements to the robot and highlight the

objects that are important for the task. Further, the

tutor can instruct the robot to execute a certain move-

ment sequence and again mark the objects to which

this sequence should be applied. Thus, the interaction

module influences many elements of the framework such

as the Segmentation, Movement Learning, Labeling and

Sequence Selection.

tutor model

object marked

as salient

current state
of the robot

detected

objects

segmented

trajectory

Fig. 2 Visualization of a scenario: The Persistent Object Mem-
ory comprises the tutor and the objects present in the scene.

3 Perception and interaction cues

An important ability of a cognitive system is the per-

ception and representation of perceived elements. This
representation has a variety of functions. It should pro-

vide a stable “image” of the world, fuse sensory signals

and augment perceived elements with stored informa-

tion. Further, it should allow flexibility and generaliza-

tion for the system by representing behavior-relevant

information. These points are addressed in this section.

3.1 Persistent object memory

The Persistent Object Memory (pom) is the robot’s per-

ceptual interface to the world. All sensory information

(vision and proprioceptive information) is subsumed

and represented in this memory. This representation is

based on a kinematic tree of the world including the

robot, where all entities can be updated through sensors.

These sensory signals are stabilized using a combination

of low-pass, median and model-based filters.

When performing experiments with our humanoid

robot we can rely on a variety of input processing meth-

ods to detect scene elements based on stereo vision only.

Planes, like tables and chairs, can be detected using

methods such as presented by Heracles et al. (2009).

Simple color tracking methods (Bolder et al. 2007) allow

to detect uniformly colored objects and skin color blobs.

By applying some model-based assumptions also more

complex objects like baskets are detectable (Schmued-

derich 2010). Usually a set of predefined objects is ex-

pected to be perceived during an experiment. However,

it is also possible to automatically generate new object

descriptions and insert them into the kinematic tree as
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shown in Einecke et al. (2011). An example for the 3D

visualization of the pom is depicted in Figure 2.

The perceived scene can further be supplemented

with predefined, static elements such as a fixed table or

wall. Furthermore, additional information about object
shapes can be incorporated. For example, in the first

experiment (see Section 6) the system detected the

colored objects using 3D color tracking and augmented

the perception with predefined shape information.

All sensory inputs are processed in each frame, and

are time-synchronized with the robot’s proprioceptive
sensor data. This allows to compensate the ego-motion

of the robot and to account for unreliable perception

due to occlusion of the visual field caused by the robot

itself. The details of the algorithms are beyond the scope

of this paper, please see Schmuedderich (2010) for more

details.

As sensor information might be noisy and unreliable

the system includes confidence values for each detected

object. If an object is not updated by new sensor val-
ues, then this confidence decays over time. We apply a

Sigmoidal function of the time t that passed since the

last sensor update. It is parametrized in such a way that

the confidence begins to decay after 5 seconds without

sensor update and becomes almost 0.0 after 10 seconds

(a = −2 and b = 15):

conf (t) = ς(a · t+ b) with ς(x) =
1

1 + e−x
(1)

The pom further includes a short term memory that

stores the complete state information for a short time

period (i. e., a few minutes). This allows to perform

operations on past experiences like segmentation and

extraction of object trajectories.

3.2 Tutor model

We assume that the robot interacts with a tutor. There-

fore, the pom also includes a model of the upper part of

a human’s body. While quite sophisticated approaches

have been suggested (see e. g., Hecht et al. 2009), the

model has been kept simple in this work. It is an en-

abling element for the human-robot interaction and has

been realized to achieve the required functions. Future

work will focus on improving this model. The tutor’s

movement is computed using an inverse kinematics al-

gorithm based on Nakamura (1991): The 3D position

of tutor’s hands and head are determined using the

stereo camera system employing skin color detection

and depth computation. These values are augmented

into a 9-dimensional task vector, which is projected on

the tutor’s pose using kinematic redundancy resolution

as in Eq. (13). The camera’s field of view and the ex-

perimental setup allow to track the tutor’s pose while

gazing at the most salient objects.

The tutor model fulfills two tasks. First, it serves as

a model-based filter for the hands of the tutor. Joint

limits and joint speed limits prevent the body parts

of the tutor from moving unnaturally fast. Therefore,

movements are filtered more realistically during phases

where the input is missing (e. g., because of occlusions).

Second, the model is used for recognizing simple pos-

tures (Section 3.3), which can trigger transitions of the

movement primitive state chart on the Sequence Layer

(Section 5.1).

But, such a tutor model can be additionally useful.

A common problem when relying on vision input is the

detection of the hand orientation when grasping objects.

The hand is often hidden behind the object, which can

lead to a wrong estimation of the tutor’s pose. Assuming

a power grasp, the problem can be solved by aligning the

grasp axis of the tutor’s hand with the object’s major
axis if hand and object are close together. This results

in a better estimation of the tutor’s posture.

Furthermore, a tutor model allows the prediction of

internal states of the tutor. In our previous work (Mühlig

et al. 2009b) we have shown that by defining cost func-

tions, such as effort (torque-based) or discomfort (based

on joint ranges), it can be possible to determine which

elements of a movement demonstration are important

and which just result from a natural posture. This work

is based on findings about the mirror system in the

human brain. It is claimed that humans employ their

own motor system for recognizing actions and intentions

of others (see also Matarić and Pomplun 1998).

3.3 Posture recognition

Based on the tutor model, basic posture recognition is

performed to structure the interaction and communi-

cation with the robot. This is mainly used to trigger

transitions within the hierarchical state chart on the

top layer of the framework. Postures are recognized

by continuously evaluating the positions of the hands

relative to the head of the tutor. For example, in the

experiments described later, postures like raising one

or both hands are used to instruct the robot to imi-

tate movements one-handed or bimanually. The same

postures are used to indicate the robot to remember or

ignore a demonstrated movement.
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3.4 Saliency mechanism

For human-robot interaction, an attention system to

guide the robot’s gazing behavior is essential. In the

presented system, it allows the tutor to highlight impor-

tant scene elements (e. g., the objects that are involved

in a task demonstration). On the other hand, the robot

is able to give feedback to the tutor by gazing at what

it “believes” to be important.

The most common computational approaches to at-

tention combine pixel-wise bottom-up feature channels

into saliency maps, from which the maximally activated

pixel is selected for gazing (Itti et al. 1998; Nagai et al.

2008).

We apply a more object-related account of atten-

tion that has recently been substantiated by growing

experimental evidence (Scholl 2001) and also picked up

in several computational models (Wischnewski et al.

2010; Orabona et al. 2007; Walther and Koch 2006).

However, in accordance with our object-related tasks,

we directly assign saliency values si only to detected

objects. These values have a temporal decay and can be

increased either by moving or shaking objects or by a

tutor pointing at them. Additionally, a list of all objects
is maintained, sorted according to their saliency values.

The saliency computation includes a small hysteresis to

make reorganizing the list insensitive to sensor noise:

A small constant value is added to the more salient

object within the sorting algorithm. Since the saliency

is defined for each object, regardless if it is visible or out
of view, the saliency list can consistently be computed.

However, we should note that only the most salient

objects are relevant for segmentation and movement

imitation.

This saliency list allows quick access to the most

salient objects, which is utilized by the concept of Linked

Objects, explained in the next section.

3.5 Linked objects

A cognitive robotic system naturally operates within

dynamic environments in which the number of objects
as well as their identities and geometrical shapes are

not known in advance. The representation of movement

tasks must therefore be decoupled from concrete object

identities. This increases the reusability of learned tasks

and decreases the number of required task descriptions.

To achieve this, we introduce the concept of Linked

Objects.

A linked object is best thought of as a virtual object

that can be associated with a perceived object within the

pom. Linked objects are the entities on which the object-

Fig. 3 Linked objects Li are associated with perceived objects
within the Persistent Object Memory (pom) using the saliency

mechanism. The left part of the tree depicts the kinematic topol-

ogy of the robot.

related tasks are formulated and which are constituting

to the objects to be considered for collision avoidance.

The links are created using the attention mechanism

explained in the previous section, which provides an

ordered list of salient objects. Salient objects of this list

are directly assigned to the linked objects in their order:

The linked object L1 refers to the most salient object,

linked object L2 to the second-most salient object etc. If

an object’s saliency is below a threshold, the association

to a linked object is deleted, and the linked object refers

to the world reference. This is depicted in Figure 3.

Linked object L1 is associated with object 2 and has

the highest saliency. L2 is associated with object n.

During interaction, one can now use the attention

mechanism to indicate the important objects to the

system. The tutor can increase an object’s saliency by

shaking or pointing to it, and decrease the saliency
by hiding it. If an object’s saliency exceeds another

object’s saliency, the list will be re-sorted, and the link

associations will be updated.

Linked objects allow interesting generalization capa-

bilities for the robot. Formulating a task that relates to

linked objects gives the flexibility to interactively change

the robot’s behavior. For instance, formulating a task

to gaze at linked object L1 leads to a behavior where

the robot will always track the most salient object in

the scene. The same applies for reaching or approaching

an object. If the robot should for instance reach for

object 3, the tutor simply points to it before she/he

makes the robot perform the reaching movement with a

task relating the hand position to the linked object L1.

In this work, we give the tutor full control over the

learning process. Therefore, we limit the saliency com-

putation to the mentioned interaction cues and ignore
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more sophisticated features such as color or mass. Be-

cause the tutor can restrict the robot’s focus, complex

scenes with many objects become tractable.

3.6 Attention-based gazing

The saliency mechanism also defines the gazing behav-

ior of the robot. A virtual gazing point is calculated

according to the confidence and saliency values of the

detected objects. The position of the gazing point pg
is calculated according to Eq. (2). The vector pi corre-

sponds to the position of object i and scalar si to its

saliency value. Only objects with confidences conf i that

are high enough (larger than constant cs) are involved in

the calculation. If no object is salient, a default gazing

direction is activated instead.

pg =
∑
i

pisiwi∑
i siwi

∀i : conf i > cs (2)

Additionally, we include a factor wi that increases the

importance of objects that are near to the border of the

field of view. This leads to a behavior in which the robot

tries to keep all important (i. e., recently highlighted

by the tutor) objects in its view. This reactive gazing

behavior can also be influenced by elements from the top

layer of the architecture. For example, if the robot needs

a response from the tutor, the weight for the tutor’s

head whead is increased. The robot then gazes at the

tutor and continuously tracks her/his head. This gazing

behavior is motivated by the selected scenario, and not

particularly conform with psychological findings, which

revealed that humans cycle their attention among the

most salient objects. However, the implemented gazing

behavior is a good compromise between keeping objects

in the robot’s field of view while still enabling it to

give feedback. Nevertheless, more biologically plausible

attention models will be subject to future work.

Note that this way of including a task-driven mech-

anism can be regarded as a simplified version of the

well-established Theory of Visual Attention (tva, Bun-

desen 1990). tva is capable of explaining a large range

of psychological data and it has the hypothesis that

attention is guided by a product of a top-down task-

dependent so-called pertinence value, here modelled as

wi, and bottom-up object-related so-called attentional

weights, here the si.

4 Movement learning

A key element of the presented architecture is the ability

to learn movements by observing a human tutor. We

apply a probabilistic movement representation to exploit

the statistical characteristics of a presented movement

task in three steps. First, multiple demonstrations of the

movement are segmented. Second, a feasible task space

is chosen which encodes the movement in a generic way.

And finally third, the demonstrations, projected into the

chosen task space, are learned using Gaussian Mixture

Models.

4.1 Movement segmentation

For the movement segmentation, we exploit the assump-

tion of an interactive scenario with a human tutor to

recognize when significant object-related actions are

performed.

We propose a movement segmentation that is based

on correlative features between the tutor’s hand and

objects. This is motivated by the chosen experimental

setup. However, the concept is also applicable to other

correlative features, such as e. g. foot-object relations.

The basic idea is that if an object and a hand are close

to each other and begin to move coherently, the object

is most likely in the hand of the tutor and she/he is

manipulating the object actively. This marks the start

of a segment. The end of a segment is reached if both

conditions become invalid. Such a segment is taken as

one demonstration of the movement task. This concept

works very well for tasks that involve picking and placing

objects. However, it should be noted that it is not suited

to segment movements that depend on hand gestures,

or in which the hand movement differs from the object

movement.

For the segmentation a function f is calculated that

consists of two terms (Eq. (3)). The function describes

the correlation of the hand and object movement.

f(p1,p2,v1,v2) =
1

2
· g(|p1 − p2|) +

1

2
· h(v1,v2) (3)

The first term g (Eq. (4)) depends on the distance

between the two closest points p1 and p2 of hand and

object, respectively. We compute these distances using

swept volume shape approximations of hand and object.

Function g uses the Sigmoid function from Eq. (1) to

generate values near 1.0 if the hand is near the object.

g(d) = ς(c1 · (d− c2)) (4)

The second term h is similar to g but depends on the

velocities of both points.

h(v1,v2) = α(v1,v2) · ς(c3 · (|v1 − v2| − c4)) (5)

The value of h increases if the difference of the velocity

vectors vi is low. Function h incorporates another term

α that depends on the absolute velocities of hand and
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Fig. 4 Calculation of the correlation of velocities of two corre-

sponding objects: Using the closest points makes the result inde-
pendent of the objects shape.

object. It ensures that function h cannot contribute to

the value of f if hand and object are not moving.

α(v1,v2) = ς(c5 · (|v1| − c6)) · ς(c7 · (|v2| − c8)) (6)

The constants ci are used to adjust the value ranges

and define how smooth the individual Sigmoid functions

transition from 0.0 to 1.0. From the eight constants,

those with an odd subscript define the steepness of the

transition, while those with an even offset can be seen

as a threshold for when this transition occurs.

The values of function f follow a trimodal distri-

bution. If the hand and the object are not moving or

are not near each other, then f is a value near 0.0. If

hand and object are close to each other, but not or only

slightly moving, f is around 0.5. If hand and object are

close and their nearest points are moving into similar di-

rections with similar velocities, the value of f increases

towards 1.0. This behavior is very advantageous, be-

cause it allows to segment object movements by simply

applying two thresholds for start and end.

Concerning the velocities used in the calculations,

the näıve approach is to use the linear velocities of hand

and object. This, however, neglects the objects’ shapes

and changes of orientations and is a problem as e. g.

depicted in Figure 4. When rotating the hand with the

stick, their linear velocities v1a and v2a are very different

although both are moving together.

To overcome this problem, the angular velocities

ωi and the nearest points pi of object and hand are

included in the calculation. Computing the radii ri
with a proximity computation between hand and object,

the overall velocities vi of the nearest points can be

calculated with:

vi = via + ωi × ri (7)

4.2 Task space selection

After movements have been segmented, a feasible set

of control variables needs to be chosen for each set of

segments. In Section 5 a task-level control approach is

presented that allows to define tasks that relate any

body in the kinematic tree representation to any other

body. This flexibility however makes it necessary to find

a good representation of an observed movement task

that is compact, describes the important elements of

the task, and does not constrain the robot more than

necessary. We therefore include the selection of a feasible

task space representation in our learning framework

as first proposed in (Mühlig et al. 2009b). The idea

is to evaluate commonly used task spaces (task space

pool) and to select the one in which the movement

is represented most consistently. The task space pool

includes all relations between the objects that fulfill the

following criteria.

The task spaces in the task space pool are predefined.

The system makes use of the attention mechanism and

the linked objects concept to restrict a possible task

description to the most salient objects. Only the first

two most salient objects L1 and L2 in the scene are

regarded in the learning scenario. Dealing with larger

combinations of objects will be subject to future work.

The frame of reference in which a movement is de-

scribed can play a major role for generalization. For

each relation of two objects we therefore include the

both possible descriptions: The movement of object L1

in the reference frame of object L2 and vice versa.

Further, it can be useful to describe object move-

ments not as movements of their center points, but as

movements of specific feature points that are also inher-

ent to other objects. For example, if the task is to learn

how to place objects on top of another, representing the

movement in relative coordinates of the center points

of two objects does not generalize over different object

sizes. A better way is to describe the movement of one

object’s bottom wrt. another object’s top. Such feature

points (top, center, bottom) are included in the object

description of known objects and defined a priori. In fu-

ture this could be combined with mechanisms to detect

such features automatically.

We regard the positional and rotational elements

of the task space separately, where positions are repre-

sented in Cartesian coordinates and orientations as one

angle around the normal axis of the camera plane.1

For choosing a good task space representation, mul-

tiple demonstrations of the same task need to be shown

by the tutor. The idea is to compare task spaces and find

1 The restriction to only one angle results from the use of stereo

vision.
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the one in which the movement is represented most con-

sistently. This is reflected by a low inter-trial variance of

the movement in this particular task space. For this, we

calculate a consistency score C for the projection of the

object movement into each task space in the task space

pool individually and finally choose the task space with

the highest score.

The first step is to project all trajectories of the

demonstrations into the task space (e. g., the task space

relating the bottom of the most salient object to the top

of the second-most salient). Then the trajectories are
temporally normalized using Dynamic Time Warping

(Sakoe 1978; Calinon et al. 2007). This is necessary be-

cause the tutor may have presented the task at different

speeds. After this normalization the mean trajectory

and the inter-trial variance between the demonstrations

is calculated. The score for the task space then results

from applying the following reciprocal function to the

task space trajectory of length N :

C =

N∑
t=1

1

1 + s · σt
(8)

The scalar σt is the inter-trial variance of the demon-

strations at timestep t and s is a scaling parameter. We

chose a fixed value for s, but it can also be used to scale

the variance for each task space individually. The score

can be interpreted as the consistency of the task space

for this specific task. It reaches high values only if there

are phases of low inter-trial variance.

The suitability of each task space to represent the

movement is now characterized by this value and the

task space with the highest score is selected.

4.3 Probabilistic movement representation

After a feasible task space has been chosen and the

task demonstrations are temporally normalized using

Dynamic Time Warping, a representation is learned by

means of Gaussian Mixture Models (see also Calinon

2009):

p(xi) =

K∑
k=1

πkp(xi|k) with p(xi|k) = N (xi;µk,Σk)

(9)

The vectors xi correspond to the time series of all demon-

strations, defined in the chosen task space with time as

an additional dimension. The symbols πk, µk and Σk

represent the prior, mean vector and covariance matrix

of the Gaussian distributions k = 1..K.

This gmm is learned for each primitive, which means

that the overall sequence is composed of primitives that

have different gmms and act on different sets of control

variables. The sequential flow of the primitives is how-

ever not affected by this mechanism. The probabilistic

representation allows to store the mean movement and

the covariance information that can later be exploited

by the robot. The idea is that a high inter-trial variance

corresponds to a less important phase of the demon-

strated task. With the movement optimization scheme

presented in the next section, we allow the robot to di-

verge from such less important phases of the trajectory

to fulfill additional criteria.

The Gaussian Mixture Model is learned with a batch

learning approach using Expectation-Maximization and

k-Means initialization. The optimal number of Gaus-

sian distributions K used for this representation is de-

pendent on the complexity of the movement and can

be estimated using the Bayesian Information Criterion

(Schwarz 1978). This criterion basically rates the model

complexity versus the representation quality. The sys-

tem applies an efficient heuristic using this criterion,

which does not require to perform a full em learning

for each possible number of Gaussians (for details see

Mühlig et al. 2009a).

After learning, the movement is stored in form of a

movement primitive in the Movement Primitive Memory.

The learned task is not associated to specific objects,

but stored as a relation of linked objects in the task

space chosen by the task space selection.

5 Movement reproduction

The presented framework uses movement primitives

as basic behavioral building blocks. These movement

primitives can be either predefined or learned using

the techniques described in the previous section. This

section describes how movement primitives are combined

to perform more complex tasks, the optimization-based

adaptation of movement primitives to new situations

and the advantages of decoupling the movement task

from the embodiment.

5.1 Sequencing of movement primitives

Most of the real world problems are to complex to be

solved with single movement primitives. To overcome

this limitation the system includes a hierarchical state

chart on the top level of the framework. In this state

chart, movement primitives that are either learned or

predefined are connected using different kind of tran-

sitions. These transitions switch the activation of one

movement primitive to the next if certain conditions

are fulfilled. For example, such conditions can be the
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reaching of the end state of a movement primitive or a

specific posture of the tutor (e. g., raising a hand). Usu-

ally, movement sequences are defined in the procedural

memory which are later augmented with newly learned

skills. Which of the sequences should be used with a

new skill is decided by the interaction with the human

tutor.

As for the experiments, we have manually designed

the flow of segments, so that the neighboring segments

have a meaningful transition of the selected task spaces.

In general, it is not fatal to remove or add a primitive.
The system is robust in this sense, since each primitive

is implemented by a movement converging to a vector of

subsequent attractors. The alignment is implicitly done

by the transient behavior of the attractor dynamics.

However, it is sometimes necessary to check that certain

preconditions are met. For instance, when grasping an

object, we must take care that the hand has been opened

before. Or before bringing the robot in its resting pose,

it needs to be made sure that it avoids collisions with

the table, either by using optimization, or by designing

a safe sequence.

It needs to be noted that the sequencing layer is

not in the focus of the current system and is rather an

enabling functional module. The sequencing layer pri-

marily serves to enable the execution of the learned skills

with new objects or in different ways. Recently, much

more sophisticated methods of planning with movement

primitives have become available (e. g., Toussaint et al.

2010) and may inspire future extensions of our system.

5.2 Movement optimization

For movement reproduction, the movement primitive

layer applies a linear attractor system to the selected

task descriptions. This leads to a smooth movement that

converges the robot’s pose to the attractor target values.

We developed movement primitives with different levels

of complexity. Simple movement primitives converge the

robot’s trajectory reactively, with mechanisms to locally

avoid joint limits or collisions. These primitives are used

to realize the preparatory movements like e. g. reaching

and grasping an object. This is however not enough to

adapt complex, learned movements to new situations.

For instance if a stacking task has been learned on an

empty table, and is to be imitated in presence of an

obstacle, the movement optimization modifies the move-

ment to avoid the collisions with the obstacle. Further,

criteria like actuator limits or collisions with obstacles

need to be incorporated. To account for this, we devel-

oped primitives that are composed of several attractor

vectors that can be optimized with respect to a set of

criteria, such as collision and joint-limit avoidance (for

details see Toussaint et al. 2007). The employed opti-

mization scheme works in an optimal control fashion and

uses a modified version of the R-Prop algorithm (Igel

and Hüsken 2003). It is local in space, but anticipates a

future time horizon. The input is the current state of

the system (robot and object poses), the probabilistic

model of the learned movement (gmm), as well as a

set of weighted cost function terms. The chosen cost

function comprises terms to avoid collisions, joint limits,

and to generate a smooth movement. With this input,

the system computes an optimal sequence of attractor
vectors that governs the overall movement. In decently

complex environments, this scheme allows to generate

movements that are collision-free and optimal in other

respects. Imitation information is included consistently

as a cost function that describes the similarity of a

learned movement µ̂t to the movement of the robot xt:

cim =

T∑
t=1

(xt − µ̂t)
TWt(xt − µ̂t) (10)

The similarity is weighted with Wt, which depends

reciprocally on the covariance at the corresponding time

point. Both, information about the mean and covariance

is extracted from the respective movement primitive by

applying Gaussian Mixture Regression (gmr) to the

previously learned Gaussian Mixture Model.

Applying this optimization scheme results in imi-

tated movements that reflect the tutor’s characteristics

precisely in phases with low inter-trial variance, while

phases with higher variance weight the other criteria

stronger. This means the system imitates the movement

as good as possible, but does adapt the movement to

account for its constraints and limitations.

In order to assure a fluent interaction we imple-

mented the possibility of parallel optimization. Using

the information of the state chart about predicted future

states, it is possible to optimize movements in advance.

Assuming a static environment without the need of a
re-optimization when the optimized movement primitive

is reached, this leads to a fluent transition between the

movement primitives.

5.3 Movement control and task coordinates

The robot’s kinematics is described in the form of a tree

structure depicted in Figure 5. The individual links are

connected by degrees of freedom (joints) or rigid body

transformations. The tree also comprises links which

represent objects from the environment and are updated

by the pom. This allows to derive the kinematics not

only with respect to a heel or world reference frame, but

also to formulate robot-object or object-object relations.
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Fig. 5 Left: Kinematic tree, both robot and other scene elements

are represented in one consistent graph. - Right: Coordinate sys-

tems to compute relative body kinematics.

Kinematic task descriptor are defined as the relative

movement of one link with respect to any other link.

To mathematically formalize this concept, we look at

the relative kinematics of an articulated chain, such
as depicted in Figure 5 right. Coordinate frame 0 de-

notes the root. Frame 1 is an arbitrary body which is

connected to 0 through a set of joints. Body 2 shall
be represented relative to body 1 with vector r12. The

kinematic equations can now be written as follows:

r12 = r02− r01 ṙ12 = ṙ02− (ṙ01 +ω1× r12) (11)

The outer product term of Eq. (11) right is due to the an-

gular velocity ω1 of body 1. Introducing the coordinate

system in which the respective vector is represented as

the left sub-index and projecting the velocities into the

robot’s configuration space with the respective transla-
tional ṙi = JT,i q̇ and rotational Jacobians ωi = JR,i q̇,

the differential kinematics gets

1ṙ12 = A10 (0JT,2 − 0JT,1 + 0r̃12 0JR,1) q̇ = 1JT,rel q̇

(12)

with r̃ = (r×) being a skew-symmetric matrix repre-

senting the outer product, and A10 being a rotation

matrix from frame 0 to frame 1. The task descriptors

for a segment’s spatial orientation can be computed

accordingly, for instance in Euler (3D) or Spherical an-

gles (2D), or as the inclination of one body axis with

respect to any other (1D). With these equations, one

can formulate task descriptors that relate any link of

the tree to any other. Further, it is possible to compute

these descriptors element-wise, such as “position of body
2 with respect to body 1 in X-direction”, or “Euler α

angle of body 2 with respect to body 0”.

Similarly, we can derive dynamic task descriptors for

the overall linear and angular momentum and others,

see Gienger et al. (2010b) for details.

For a set of task descriptors, we augment an overall

task Jacobian, and compute the joint rates with an in-

verse kinematics scheme based on the concept presented

Fig. 6 Different robot postures according to the same task repre-
sented in effector coordinates: All three depicted poses correspond

to the same coordinates (x y α)T .

in Liégeois (1977)

δq = J# ∆e− α (I − J#J)W−1

(
∂H

∂q

)T

(13)

where J# is a W -weighted Pseudo-Inverse of the aug-
mented task Jacobian, ∆e is the feedback error of the

task coordinates, and H is a secondary objective (we

chose a joint limit avoidance penalty) whose gradient is

projected into the null space of the movement through

the right term of Eq. (13).

The choice of the order of the relative coordinates

yields some interesting aspects. This is illustrated in

Figure 6 for a simple planar redundant system described

by task variables (x y α). If the task variables are
represented in the object’s or robot’s frame of reference,

different values are needed to realize the depicted poses.

If, like depicted, the orientation between object and end

effector is not important, it may be more advantageous

to represent the task variables in the effector’s frame of

reference. In that case, all three poses can be realized

with the same values (x = d, y = 0, α = 0). This task

description introduces an invariance with respect to the

relative pose between effector and object. Its null space

comprises the relative pose between effector and object.

When resolving redundancies with Eq. (13), the achieved

pose will correspond to a (local) optimum with regard

to the cost function H. This difference is exploited when

selecting a feasible task space as explained in Section 4.2.

5.4 Body schema adaptation

Kinematic structures as depicted in Figure 5 represent a

parent-child hierarchy: The movement of a segment will

affect the movement of its children. In many practical

situations, changes to this kinematic configuration occur.

An example is a robot grasping an object and putting

it at a different position. Another example is to put an

object from a table on a tray which is placed on the

table. A common approach to deal with such changes is
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Fig. 7 Adaptation of the kinematic chain according to per-
formed action. The linked objects are denoted with Li, index

i being the saliency index.

to keep the kinematic configuration, but to compute the

robot’s end effector coordinates based on the desired

object transformation. This way, the movement can be

controlled in end effector coordinates, and collisions can

be taken into account by applying avoidance strategies

based on the transformed object geometry.

We propose to address this problem by adapting the

body schema (or body image), which commonly refers

to the perception of a human’s physical appearance. In

robotics, a number of approaches to learn and adapt

the body schema have been proposed, for instance for

proprioceptive models (Hersch et al. 2008) and for mod-

els including tools (Stoytchev 2003; Nabeshima et al.

2006).

In the following, we assume the geometric properties

of the system to be known, and focus on dealing with

structural changes during interaction with the environ-

ment. We argue that kinematic structure modifications

can be modelled in a higher abstraction of the move-
ment generation system, such as in actions or in action

sequences. For instance if a robot “grasps” an object,

it is either known or it can be reconfirmed by sensor

feedback that the grasp is successful and the object is

held by the robot’s end effector.

We suggest to exploit this knowledge and apply such

structural modifications based on actions like grasping

or releasing an object. This is depicted in Figure 7.

Applying an action that grasps linked object L2 will

modify its connectivity so that it is connected to the

grasping hand of the system. It should be noted that this

also accounts for the case where the linked object refers

to a parent-child structure like object 2 in Figure 3. An

example would be to grasp a tray on which two objects

are placed. In the same way, releasing the linked object

Fig. 8 Kinematic chains for different body schemas. The gray
lines cover the joints and transformations that are involved in

the movements.

can be associated with connecting it to the world’s frame
of reference, or any other object at which it is positioned.

This approach is beneficial, since firstly, an abstrac-

tion of the embodiment is introduced. Object movements

are generic, while the movement of an end effector al-

ways incorporates the knowledge about a specific trans-

formation between end effector and object. Secondly,
representing movements in object coordinates allows

to introduce invariance in the same line of argument

as discussed in Figure 6: Stacking a cylinder on top of

another can be described by aligning the cylinders sym-

metry axis, while it is rather difficult to find a general

end effector-object relation.

Figure 8 illustrates this for three examples. Let’s

assume a task descriptor that relates the transformation

of linked object L1 to the transformation of linked object

L2. The target values are determined to put L1 on top of

L2. In example a), L1 is connected to the left hand, while

L2 has a fixed transformation. The system will generate

a trajectory moving the grasped L1 on L2 with its left

arm. In case b), both L1 and L2 have been grasped. The

result is a coordinated bimanual movement, L1 is put on

L2 which is held with the right hand. In case c), L2 has

again a fixed transformation in world coordinates, and

L1 has been grasped with both hands. In this case, the

system will put L1 on top of the static object L2, but

this time generating a coordinated bimanual trajectory

with the grasped object L1.

6 Experiments

In this section we present two experiments to illustrate

the generalization concepts of the framework. The sup-

plementary video (Online Resource 1) shows the two

experiments in different situations. It includes also an
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Fig. 9 Consistency scores for the stacking experiment. The task

is represented best by relating the bottom of the most salient
object (L1bottom) to the top of the the second-most salient object

(L2top). The feature points “bottom”, “center” and “top” have

been predefined to match the object geometry.

example where the robot avoids collisions while imitat-

ing a movement, which is not addressed in this paper

(but see Mühlig et al. 2010).

6.1 Stacking objects

In the first experiment the robot is taught how to put

objects on top of another. Figure 10 shows the setup

and the interaction flow between tutor and robot. In

the beginning the tutor taps on the red object to make

it salient to the robot. Internally, this associates the

red object to linked object L1 and the green object to

L2 since only two objects are present. Then, the tutor

puts the red object onto the green object. The relevant

movement is segmented by evaluating the correlation of

hand and object movement as described in Section 4.1.

After the demonstration the robot gazes at the tutor

and waits for a response. The tutor raises his left hand

to confirm that the movement shall be learned.

For brevity, only one demonstration of the task is de-

picted in the figure. The tutor however demonstrated the

task multiple times (between three and seven demonstra-

tions have been found to be reasonable for the selected

scenario) and with varying objects (see Figure 11 top

left). This allowed the automatic task space selection to

choose the most reasonable task space, namely relating

the bottom of the most salient object L1 to the top of

the second-most salient object L2.

Next, the tutor raises both hands to instruct the

robot to perform the task bimanually. This starts several

processes in parallel. Internally, the system first learns

the movement using the probabilistic encoding explained

in Section 4. Then the optimization process is initialized

with the predicted pose of the robot. Thereafter the

solution is computed while the robot approaches the

table. When the robot stands in front of the table, it

grasps the objects, performs the learned task using the

optimization result, puts the objects back on the table

and returns.

Note, that the learned movement was integrated into

the movement sequence for grasping both objects. If

the tutor would have raised only one hand instead of

both hands, the same learned movement primitive would

have been integrated into another movement sequence

in which the robot would have performed the task one-

handed. We want to emphasize that the preparatory

movements like approaching the table or grasping the

object have been pre-programmed and are not learned.

Imitating the task one-handed or bimanual is encoded

as separate sequences within the state chart. For the

one-handed case, the body schema is modified such that

the most salient (red) object is topologically assigned to

the left hand (Figure 8 a), while the second-most salient

(green) object has a fixed transformation to the world

reference frame. For the bimanual case, both objects are

attached to the hands (Figure 8 b).

Figure 9 depicts a comparison of the calculated task

space scores. According to Section 4.2, 18 different task

spaces are compared. These are the positions of the

feature points of L1 and L2, projected into all possible
task spaces. The orientation has been excluded from the

task space selection. The second-best score corresponds

to the same feature relation as the best score, with

the difference that the movement is represented in the

other object’s reference frame. This results from the

nature of the task, which makes both representations
equally effective. This however is not always the case as

explained in Section 5.3.

For emphasizing the quantitative influence of choos-

ing a good task space, Figure 12 compares the positional

task elements of a typical representation relating object

centers with the chosen task space representation. The

bottom row shows the score value for each time step.2 It

can be seen that the chosen representation is less variant

in the end of the movement, especially in Z-direction

(vertical direction).

Representing the task in these coordinates allows the

robot to apply it to unknown objects, if they comprise

information about their top and bottom. This general-

ization ability is demonstrated by instructing the robot

to put a candle on a candle holder (see Figure 11 bottom

left). The movement was not learned with these two

objects. Further, the top of the candle holder is not

above its center, as compared to the cylindrical object

2 The term within the sum of Eq. (8) plotted for each time

step.
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Fig. 10 Illustration of the interaction and the interplay between internal elements during an experiment. Note that the movement

optimization is done in parallel to the robot’s movement. The dashed line indicates that the imitation phase may have to wait for the

optimization to finish. During phases between “freeze objects” and “unfreeze objects”, the scene is not updated by the vision system
and assumed to be static.

Fig. 11 Two experiments were conducted. Left: The tutor is stacking various objects on top of another and the robot is able to

reproduce the movement with two objects not seen before. Right: The tutor is demonstrating how to pour a beverage and the robot
is successfully able to reproduce the movement.

the movement has been learned with. If the task would

have been learned in the coordinates of the object cen-

ter, the robot would not have been able to reproduce it

correctly.

Additionally to the selection of a feasible task space,

the experiment shows how the body schema adaptation

can be used for generalization. In the experiment, the

tutor demonstrated only one-handed movements with

the target object remaining on the table. The robot

however was able to perform the movement bimanually

(see Figure 10). This results from the movement being

represented in relative object coordinates and the body

schema adaptation. When grasping an object, it becomes

attached to the kinematic tree of the robot, such as

described in Section 5.4. The optimization process then

adapts the robot’s motion to comply with the desired

object motion. Note that the movement primitive for

this bimanual task included an additional constraint for

holding the green object upright.

6.2 Pouring

In the second experiment the robot had to learn how

to pour a beverage from a bottle into a glass (Fig-

ure 11 right). The objects were tracked with a magnetic-

field-based motion tracking system, the tutor was still
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Fig. 12 Comparison of the five stacking demonstrations in the
näıve representation relating object centers (left) with the chosen

representation (right). Plots with the same line color belong to
the same demonstration.

detected through vision. Further, we used millet as a

replacement for liquid.

After the tutor presented the task five times, the
system automatically chose the most appropriate task

space. As can be seen in Figure 14, the best represen-

tations for the task is to relate the top of the bottle

to the top of the glass or vice versa. Again we show a

comparison between the näıve representation relating

object centers and the chosen task space in Figure 13.

It can be seen that the chosen representation yields a

lower variance especially during the important middle

phase (the actual pouring phase).

Note, that due to the task space selection, the top

of the bottle wrt. the top of the glass is always tracked

precisely. Even in difficult situations where the orienta-

tion of both objects cannot be reproduced as observed,
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Fig. 15 At the beginning of the optimization the learned move-

ment is not tracked precisely (high imitation costs) and violates
joint limits. After 50 iterations a valid movement emerges.

the robot is still able to pour correctly. This would not

be the case with a representation that uses the object’s

center points.

Figure 15 also shows the necessity of the optimiza-

tion process (see Section 5.2) to adapt the movement to

the robot’s embodiment. The plot depicts the two most

influencing cost terms and the number of violated joint

limits. Without optimization, 213 joint limits were vio-

lated.3 After 50 iterations, the optimization generated
a valid movement that tracks the learned movement

as good as possible. For the movement imitation, bot-

tle and glas have been properly given to the hands in

order to match the reference points coming from the

observations.

7 Discussion and outlook

The presented system addresses the problem of object

movement learning from a whole systems perspective

and thereby provides a more comprehensive strategy

than other, more restricted systems. The main goal is

to demonstrate generalization of these learned skills to

new objects and to new ways of execution, e. g. with

a different or both hands. For achieving this goal, a

large number of functional modules for visual percep-

tion, action generation, movement control, movement

representation and attention have been combined and

integrated. We are aware that for some of these compo-

nents there are more sophisticated and possibly more

powerful methods available, if considered in isolation.

But when building and describing a complete system, we

3 The number of joint limit violations is cumulative over all
controller steps of the movement and can therefore be higher

than the actual number of joints.

had to use shortcuts in certain functional modules and

use heuristics in favor of the overarching goal to reach

the desired learning and generalization behavior. How-

ever, there are important novel concepts in our system,

which in combination provide a leap forward towards a

more flexible learning and execution of learned skill. We

elaborate more on these mechanisms in the following.

From a cognitive point of view, each learning system

must comprise at least three major elements, regardless

of what kind of representation or learning is used. First,

an abstraction process has to decontextualize the invari-

ants to be learned from particular example data, which

includes to select and acquire such data. Second, a repre-

sentation of this invariant has to be stored for later reuse,

and third, adaptive processes to readjust the learned

representation towards new situations are needed for

true generalization. Much of the effort and novel ideas

we have presented, serves to realize these three steps in

tight interaction with a user and we discuss the three

aspects in turn.

Many movement learning systems assume that ex-

ample trajectories are properly segmented and already

recorded in the appropriate space (e. g., Calinon and

Billard 2008; Kormushev et al. 2010; Pastor et al. 2009;

Ijspeert et al. 2003). If user interaction to record data

is provided, most often explicit segmentation by the

user is required (e. g., Nicolescu and Matarić 2003), i. e.

the interaction follows the special requirements of the

robot learning system. In the attempt to release these

strong restrictions, we provide the system with the seg-

mentation mechanism describe in Section 4.1. It turns

out that the articulated scene model, i. e. an internal

representation of the user and the relevant objects is

important to achieve the necessary robustness in this

process, because filtering for sensory noise, occlusions

etc. need to be resolved. On the representational side, we

use a probabilistic encoding of the example trajectories

in a Gaussian Mixture Model as several authors before

(Calinon 2009). The novel concept of linked objects in

connection with the encoding in relative coordinates

however allows for a much more flexible reuse, because

the stored invariant is the shape of the trajectory that

is given with respect to a kind of placeholder for con-

crete objects - the linked object. The system further

has the ability to choose the task space for encoding

autonomously, which yields great generalization possi-

bilities often neglected by other systems. Finally, one of

the biggest strengths of our system is to provide very

flexible means for re-adaptation of the learned repre-

sentations to a new situation. To be able to perform a

task with different objects, a different arm, or bimanu-

ally instead of single-handed requires the combination

of several ideas. The key novel concept is our flexible
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scheme for reconfiguration of the body kinematics (Sec-

tion 5.4) that allows to resort to existing path planning

and control methods even when one or more objects are

moved. To this end, the earlier introduced flexible at-

tractor based movement generation scheme provides the

required adaptivity to adjust the movement to changed

collision constraints and, as was already demonstrated

in our previous work Mühlig et al. (2010), to obstacles.

And finally the attentive mechanism that is based on

the internal model allows to interactively determine the

concrete objects to manipulate.

Of course our system also has limitations, especially

on the perception side and in the movement sequencing

layer. First, we don’t track the visually perceived objects

while the robot imitates the movement. This is due to

the problems imposed by occlusions and other inaccu-
racies, and severely limits the system in dynamically

changing environments. Second, the 3D object shapes

and the feature point locations (top, center, bottom)
have been predefined for the experiments. This could be

improved by vision-based approaches. Another limita-

tion is related to the observable sensory modalities: The

system can only learn the relation of kinematic data,

but can’t learn the force and torque interaction between

objects. And lastly, a more continuous and parallel acti-

vation of movement primitives needs to be investigated.

Although the currently applied state chart approach

eases the modelling of movement sequences, it creates

other challenges such as handling failures during task

execution in dynamic environments.

Despite these limitations, our system goes in its

complete realization beyond previous work in whole

systems robot learning of movement skills, because it
has previously not been demonstrated how a learned skill

can be executed with various object configurations and
differently from the demonstrations with both hands.
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