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Abstract— This paper introduces a motion generation frame-
work that integrates a hierarchical movement primitive (MP)
layer with optimal control in form of receding horizon optimiza-
tion. In order to benefit from fast reactions on the MP-layer,
the optimal control layer can be overridden in risky situations
to generate quick, though non-optimal solutions. By this, the
system fulfills four desirable properties. It continuously adapts
the robot’s motion without noticeable delay (1) by optimizing
for collision and joint limit avoidance based on a future time
horizon instead of the current state only (2). It accounts for
the full robot motion that may result from multiple active MPs
at the same time (3) and despite a possibly slow optimization
still provides the robustness and quick reaction capabilities of
MPs (4). The framework has been validated in an experiment
in which a humanoid robot performed a task, optimized wrt.
collisions and joint limit avoidance, but still could react within
50 ms after detection of a potential risk.

I. INTRODUCTION

In the recent years, the concept of MPs has become a

major trend in the research field of robotics. Although there

is not yet a full consensus about their definition, the common

understanding is that MPs are parametric representations of

elementary motions that can be recalled efficiently. Besides

their biological motivation [1], there are several features

that roboticists appreciate. For one thing, many MP repre-

sentations use dynamical systems for generating motions,

which makes them inherently robust to disturbances. This is

especially true for simple attractors [2], for Dynamic Motion

Primitives (DMPs) [3], but also for representations where

robustness is the target of an optimization process [4]. For

another, the compact parametrization of MPs proved to be

beneficial for applying machine learning techniques to learn

or to improve motions [5].

One particular drawback however is that MPs alone rarely

can account for generating optimal motions in new, and un-

known situations. For real world tasks, especially collisions

and the robot’s limitations have to be regarded. Further, for

co-articulated movement skills which are characterized by

multiple active MPs in parallel, the resulting motion has to

satisfy constraints imposed by the robot’s capabilities.

Several approaches to incorporate such criteria in the

motion generation process have been proposed in the past.

One group of work regards them as external disturbances

that reactively influence the robot’s state. The dynamical
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system representation of the MP then accounts for such

disturbances by generating a new motion starting from the

modified state. As an example, the authors of [6] and [7]

adapt the DMP formulation by including a term for collision

avoidance. Objects in the scene generate a potential field in

task space that applies virtual repelling forces to the robot’s

end-effector.

Another body of work accounts for robot-specific cri-

teria within the MP representation by utilizing explorative

learning. In [8] it is shown how such a learning approach

can consider the robot’s unmodeled dynamics and adapt to

generalize a task to new situations. The authors of [9] employ

learning to embed a minimum-jerk criterion into the MP

representation.

A third category of work to account for the specifics of the

situation and the robot is based on optimization methods. For

example, the authors of [10] optimize the robot’s motion to

follow a recorded human trajectory, and at the same time

to respect the robot’s joint limits. A tradeoff that needs

to be considered there is the optimization quality vs. the

calculation time. A long delay before performing the move-

ment is often considered to be unnatural. In our recent work

[11], we employed optimization before performing a learned

movement primitive. We circumvented the delay problem

by optimizing the movement in parallel during a preced-

ing phase of preparatory movements. Another alternative

approach to employ optimization is presented by [12] who

directly endow MPs with probabilistic planning capabilities.

When executing the movement, the MP transparently plans

the motions that are suitable for the current situation.

Looking at the state of the art of movement generation

with MPs, a coherent solution to generate optimal motions is

not yet existing. We believe that such an approach needs to

account for

1) a continuous adaptation of the robot’s motion to the

actual situation,

2) by considering a future time horizon and not only the

current state,

3) regarding the full body motion of the robot that results

from the combination of multiple MPs in parallel,

4) and still providing the robustness and quick response

of a reactive system using MPs.

In this paper we propose a two-layered system that ad-

dresses these points by combining a hierarchical movement

primitive framework with receding horizon optimization. The

first section introduces the motion generation concept, which

is based on a previously published framework based on

Continuous-Time Recurrent Neural Networks (CTRNNs) to
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Fig. 1. Overview of the receding horizon optimal control framework. The
initial motion is continuously generated by the upper layer and optimized
by the lower layer. The detected risk of the motion is directly coupled into
the MP hierarchy.

sequentialize MPs [13], [14]. In Section III, we present the

optimization paradigm and the criteria used to adapt the

motion to the actual situation. After this, Section IV describes

how the two layers – movement generation and optimization

– are combined in a way that still allows for quick reactions

by bypassing the optimization if a potential risk is predicted.

Finally, Sections V and VI conclude with a demonstration

of the system in an experiment and an outlook, respectively.

II. MOTION GENERATION

In this section we briefly review the motion generation

process of the movement generation layer of the framework

depicted in Figure 1. Firstly, we describe the modular struc-

ture of the MPs that allows to organize them in a hierarchy

in order to compose complex skills. Secondly, we introduce

Continuous-Time Recurrent Neural Networks (CTRNNs) as a

special kind of MPs that allow a flexible arbitration of MPs

to realize sequential and co-articulated movements.

A. Movement Primitives

In the following, the term movement primitive should be

understood as a representation for elementary, goal-directed

motions described in joint or task space. A specific represen-

tation itself is not the focus of this paper and basically any

that follows the dynamical systems equation can be used:

ẏ = f(y,θ) (1)

In the equation, the velocity ẏ in state space is the result

of a possibly nonlinear function dependent on the current

state y and a parametrization θ. The state space can be

different for each MP and is a subset of the full state space

(e. g., the position of an end-effector). As mentioned in the

introduction, there is large body of work about different

kinds of MP formulations. In this paper, we employed simple

linear attractor dynamics that can be easily designed by hand

and are inherently robust. They are designed to be stable

throughout the full state space.

In order to seamlessly use the MPs within a hierarchy, we

extend the definition of a MP with following elements:

1) An activation level a ∈ [0, 1] to scale its output and

such the activation of connected lower-level MPs.

2) A goal distance g ∈ [0, 1] that introduces a metric

to describe the difference between current and desired

state.

3) A prediction error p ∈ [0, 1] which is a measure

of the difference between the generated motion and

the expected one. Deviations might be the result from

disturbances or due to co-activation of multiple MPs.

4) A responsibility r ∈ [0, 1] to model how well the MP

fits to the current situation.

The activation level a is an input for the MP coming from

a higher level in the hierarchy. In contrast, the magnitudes

g, p, and r are calculated by each MP as a form of situation

assessment to signalize the MP’s internal state to higher-level

MPs.

On the lowest level of the hierarchy the output of the MPs

is being integrated and the error ∆e between the current

state in task space and the desired state resulting from the

lowest-level MPs is mapped to a change of joint angles δq
using a standard resolved motion rate control formulation:

δq = J#∆e− α(I − J#J)

(

∂H

∂q

)T

(2)

The term J# stands for the regularized (λ), weighted, left

pseudoinverse of the task Jacobian J :

J# =
(

JTWxJ + diag(λ)
)−1

JTWx (3)

Matrix Wx weights the contributions of the different tasks.

It is a diagonal matrix whose elements correspond to the

task activations ai from the MP outputs. The cost function

H , mapped into the nullspace with weight α, is composed of

joint limit and collision avoidance criteria. The resulting joint

angle displacements are integrated and sent to the control

system of the robot.

B. Neural Dynamics

In the hierarchy of MPs, the higher levels are responsible

to coordinate parallel and sequential activation of lower-level

MPs. In order to discriminate these complex behaviors from

the simple goal-directed motions, the higher-level MPs are

referred to as skills. Skills, as defined in this paper, are MPs

that have two specific properties. For one, skills generate a

continuous stream of activations that modulate the activity

of connected MPs in contrast to computing desired task-

level commands. For another, the activation dynamics are

implemented as dynamical systems in form of Continuous-

Time Recurrent Neural Networks (CTRNNs).

As described in previous publications [13], [14], the for-

mulation of the activation dynamics is strongly influenced



by earlier work of Sandamirskaya, Schöner et al. [15].

Each neuron of the CTRNN corresponds to one MP that is

modulated by the activation dynamics. The activation of each

MP i is computed from the neuron’s potential ui using a

Sigmoid function ai = fσ(ui). The change of one neuron’s

potential is governed by the following dynamical system

equation1:

τ u̇i = −ui − κ · u3
i + h+ w0 · fσ(ui) + si (4)

with time constant τ , a resting level h < 0, self-excitation

weight w0, and additional stimulus or inhibition si. We chose

the parameter w0 = −2 · h with h = −1.8 and thus the

dynamical system establishes two symmetric stable fix points

at resting level h and h+w0 if there is no external stimulus

si.
The stimulus si is composed of different terms that ac-

count for the activation of the skill itself (aS), a recurrent

inhibition, and the current state of the controlled MP rep-

resented by its goal distance, responsibility, and prediction

error:

si = we
· aS (base excitation) (5)

−
∑

k,k 6=i

wi
ik · fσ(uk) (recurrent inhibition) (6)

−
∑

j

wg
ij · gj (goal distance) (7)

−wr
· (1− ri) (responsibility) (8)

−wp
· pi (prediction error) (9)

−w̺
· ̺ (estimated risk) (10)

The weights w are used to define the influence of each

term on the activation of the specific MP i. For the skills

used this paper’s experiments they have been hand-defined.

The last term (Equation 10) is an external stimulus that

is not computed by each MP individually. Rather it is a

global estimated risk, which for the experiment results from

the predicted motion of a human disturber. Its detailed

calculation and its role will be explained in Sections IV

and V.

C. Kinematic prediction

As mentioned earlier, all MPs including the skills imple-

ment a common interface which allows to combine them

hierarchically. In combination with the controller on the

lowest level, the hierarchy of MPs can be used to control

a robot reactively. This has already been shown previously

in [13], where a simulated Barret WAM arm performed

different grasping sequences. A shortcoming of that approach

however is that it cannot handle joint limits and collision

avoidance in task space properly. To account for this, we

combine the reactive system with an optimization approach

that takes a future time horizon into account.

To provide a prior to the optimization a prediction of the

robot’s movement is generated using a kinematic simulation.

It is assumed that the models of the environment and the

1See [13] for a more compact matrix formulation.
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Fig. 2. Bayesian network representation of the system (top) and the concept
of setting the priority of each constraint over time (bottom).

robot are known and that the robot can locate itself and

the objects in the scene. The simulation is initialized with

the current state of the real robot and the perceived object

transformations. Starting from this state the simulation is

iterated for a number of time steps Th (prediction horizon).

At the same time, the motion generation using the MPs

generates the simulated robot’s movements as if the real

robot would be controlled. To account for the movement of

the object after the robot grasps it, a heuristic rather than a

computationally expensive physics simulation is used. The

object is moved according to the robot’s hand movement if

their distance is small and the hand is closed.

Along with the simulation, the robot’s joint space tra-

jectory Q = (q0, . . . , qTh−1) and the trajectory of MP

activations A = (a0, . . . ,aTh−1) are recorded. They serve

as input to the subsequent optimization process.

III. MOVEMENT OPTIMIZATION

In order to adapt the prior movement, described by A and

Q, to the actual situation, a movement optimization step is

being carried out. Its role is to adapt the movement to satisfy

criteria such as joint limit and collision avoidance. Here, we

chose a probabilistic inference approach for the optimization,

as it is straightforward to incorporate prior information. Note

however, that the overall concept does not depend on this

and practically any movement optimization approach can be

applied (e. g., [16], [17], [18]).

A. Problem definition

Probabilistically the problem can be modeled in form of a

Bayesian network as depicted in Figure 2. The progression

of the MP activation and the joint angle trajectory over time

is defined by:
(

qt+1

at+1

)

=

(

f(at, qt)
at

)

+

(

ǫt
ξt

)

(11)

with joint angles qt, MP activations at, and Gaussian noise

ǫt ∼ N (0, σq
t ), and ξt ∼ N (0, σa

t). The function f models

a control step following Equation 2. It calculates the joint



configuration of the next time step given the current joint

configuration and the activations of the MPs. The change of

MP activations themselves is governed by the noise ξt.

The cost function used for the optimization accounts for

several criteria:

• Movement similarity

A similarity to the movement computed by the kine-

matic prediction explained above. In the subsequent

experiments, we utilize the left and right end-effector

transformations (6D poses) and the grasping joint angles

for the left and right hand (2 DoF per hand). This

criterion leads to a bias towards the movement generated

in the MP-layer if no other criteria is violated.

• Collision avoidance

This criterion penalizes the proximity of a given set of

body pairs and follows closely the algorithms in [19].

• Joint limit avoidance [19]

B. Optimization based on probabilistic inference

The optimization problem is to find trajectories of MP

activations and joint angles that minimize the costs over a

finite horizon. We apply Extended Kalman Smoothing (EKS),

a probabilistic inference method to estimate the optimal

trajectories (maximum likelihood trajectories). EKS is an

efficient way of inferring, because it uses Taylor expansions

to linearize the system and subsequently uses Gaussian

messages for belief propagation. As we assume Gaussian

messages in the probabilistic model, we approximate at as

a vector of real values, instead of as a vector of values in

the interval [0, 1]. When at is interpreted as activations of

MPs its values are clipped. It is subject to future work to

investigate other approaches that can handle the exact range

of at in the probabilistic model.

For the inference, EKS needs gradients to approximate

the nonlinear functions. For the tasks x, the collision cost

cca and joint limit cost cjl, we use the analytical gradients

as described in earlier work [19]. The system matrix’s

gradients ∂qt+1/∂qt, ∂qt+1/∂at are calculated using finite

differences.

To weight the importance of the different criteria, the

covariance of the nodes in the Bayesian network is used.

The actual covariance values are not comparable across the

different criteria, but the concept of prioritizing them is

cost > task > prior (where a low covariance means high

priority). Figure 2 shows the concept of how to set the

prioritization over time. In order to avoid discontinuities,

the priority of all criteria is high at the initial time step.

This means, the optimizer follows the prior relatively strict.

By gradually decreasing the priority, the prior is respected

during the initial time steps while during later time steps it is

used as rough reference. The joint limit and collision criteria

have a constant high priority, as they are most important to

assure a safe movement.

The result of the optimization is a joint space trajectory

of length Th that can be executed on the real robot.
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Fig. 3. The future robot movement is predicted and optimized in parallel
to the execution of the current movement. A predicted increase of risk can
lead to an override of the previously optimal movement with a quick, but
non-optimal solution. The arrows pointing downward indicate which state
of the previous optimization is used a starting point for the subsequent one.

IV. RISK-AWARE RECEDING HORIZON CONTROL

In the previous sections, the layers of the proposed

framework – motion generation and motion optimization –

have been presented. Together they fulfill two requirements,

mentioned in the introduction, which are the “optimization

taking into account a future time horizon” (2) and the motion

resulting from the “combination of multiple MPs in parallel”

(3). In this section the remaining two requirements (1,4) are

investigated.

A. Interruptible receding horizon control

To achieve a continuous optimization of the robot’s move-

ment, a receding horizon approach is used [20]. This means,

the robot’s future movement is simulated by the MP-layer,

and optimized in parallel to the robot’s current movement.

Figure 3 shows an illustration of the approach. The bottom

row represents the robot’s motion that results from the

parallel optimization that is shown in the upper part of the

image. The idea of the receding horizon implementation

is to start the prediction and optimization couple from an

expected future state that results from a previous prediction

and optimization. The sampling interval Ts is defined as the

expected maximum time that is needed for the kinematic

prediction Tmax
p and the optimization Tmax

o of a movement

with a duration of Th. One assumption is that the time

needed for optimization is smaller than the duration of

the optimization horizon Ts < Th. This portion of the

optimization horizon will later be executed by the robot in

one block.

This however can pose problems in dynamic situations if

the sampling interval is large (e. g., in the order of seconds).

In the worst case, the system would need twice the sampling

interval to react to a disturbance. Thus, in order to keep the

advantages of MPs to quickly adapt to situation changes, a

mechanism is included to interrupt the parallel optimization
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trajectories. The red trajectory leads to a high risk caused by the small
distance between human hand and object trajectory. In contrast, the green
example of human hand motion is not risky.

at any time if a disturbance is detected. By this, the reaction

time can be reduced to Ts.

This delay could still be too long, if the optimization

is computationally expensive. Therefore, if a disturbance

is detected, the full optimization is bypassed and only the

orders of magnitude faster kinematic prediction is performed.

The resulting movement that accounts for the disturbance is

not optimal, but is available after only the short duration of

Tmax
p . We argue that in most situations in which the robot

would need to drastically change its behavior, a faster non-

optimal solution is preferred over a delayed optimal solution.

After one non-optimal period of Ts, the movement continues

optimally.

For this interruption mechanism to work, the disturbance

needs to be detectable. This could be achieved by contin-

uously comparing the expected situation to the actual one

or by a more sophisticated disturbance detection. For the

experiment in this paper, the disturbance is the predicted

risk that a human interferes with the object which the robot

manipulates. A separate risk predictor is implemented that

calculates the global risk value ̺, which has already been

mentioned in Section II-B (Equation 10). Thus the risk does

not only interrupt the optimization process, but also can

change the robot’s movement to a qualitatively different

strategy. The details are shown in the experiment section,

after the following explanation of the risk predictor.

B. Risk predictor

For the experiment, risk is defined as the possibility that

a human interferes with the object that the robot should

manipulate. To calculate this possibility, the future trajectory

of the object (resulting from the previous optimization step)

and a predicted trajectory of the human hand is taken into

account. For the latter, a simple Kalman filter is used that is

continuously updated with the human’s hand position. The

filter accounts for sensory noise and is able to predict the

future hand trajectory by assuming that the hand velocity

Fig. 5. The experimental setup with the robot standing in front of a blue
table. The task is to pick and place the object while avoiding collisions and
joint limits. A human can disturb the robot, which has to react with one out
of three behaviors (e. g., covering motion, bottom left).

remains constant. The risk ̺ is then calculated from the

following equation:

̺ = max
0<t<T̺

(

1−
1

1 + e−α(dt−β)

)

(12)

with T̺ being the length of the risk calculation time window

and dt being the Euclidean distance between the predicted

object and human hand position at time step t. Parameters α
and β are tuning parameters to change the sensitivity. For the

experiment, they are set to 20 and 0.3, respectively. Figure 4

illustrates the idea of the calculation. If the hand and object

come sufficiently close together at some time during their

predicted trajectories, a high risk is implied.

V. EXPERIMENT — “DON’T STEAL MY CANDY”

The purpose of the experiment presented in this section

is to visualize two different aspects. Firstly, we want to

emphasize the advantages of combining reactive movement

generation using MPs and receding horizon movement op-

timization as such. Secondly, the experiment serves as an

example which shows that it is often feasible to fall back to

a non-optimal solution that is immediately available rather

than accounting for a high risk too late.

Figure 5 shows the experimental setup. The robot is

standing in front of a table and the task is to get the object

(a cup filled with delicious candy) and put it to the center

of the table. While doing this, the robot has to account for

self-collisions, collisions with the yellow obstacle, and joint

limit avoidance. Furthermore, the robot can be disturbed by a

human that tries to get close to the object, which implies risk

for the robot. To account for the risk, the normal behavior

has to be interrupted and according to the situation that the

robot is in, one out of three risk avoiding behaviors has to

be performed. These are either covering the object with the

left or the right hand, or retracting the object from the table

when it is already grasped with the right hand.

The object, the obstacle, and the human hand are tracked

using a magnetic field-based tracking system. The models
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Fig. 6. The image sequence shows the result of the receding horizon
optimization (green, solid) compared to the prior movement provided by
the MPs (red, wireframe).

TABLE I

OVERVIEW OF THE SKILLS AND MPS USED DURING THE EXPERIMENTS.

MPs

H
ea

d Look at object
Look at disturber

R
ig

h
t

Lift arm
Pre-grasp
Move to cup
Grasp
Release
Lift over table
Move to center
Put down

MPs

R
is

k
ri

g
h

t Prepare covering
Cover cup
Resume from covering
Retract cup

L
ef

t Lift arm
Cover cup
Retract

Skills

Approach cup (right)
Get cup (right)
Transport cup (right)
Put cup (right)
Cover cup (right)
Cover cup (left)
Head behavior
Pick and place
Main behavior

of the objects and the robot are assumed to be known and

therefore the sensor information sufficiently describes the

full state. All computations were performed on a standard

personal computer (Intel Core i5-2400 3.1 GHz).

According to the description in Section II, the behavior of

the robot is defined by a set of MPs and skills. All in all there

are 17 linear attractor MPs and 9 skills (CTRNNs), which

are listed in Table I. They are defined with the following

granularity: The MPs are basic goal-directed movements such

as controlling the position of the right hand to reach a

target point in the cup’s reference frame. Each MP calculates

a reasonable goal distance (usually a weighted Euclidean

distance to its target) and a responsibility (e. g., right hand

grasping is responsible if the object is in a region at the

right side of the table). Skills activate the MPs sequentially

or in parallel and compose more complex behaviors, such as

opening the hand and moving it to a pre-grasp pose, grasping

and lifting the object, moving it to the target location,

or covering it with the left hand. One particular skill is

responsible for the head movement and controls two MPs,

which are looking at the object or looking at the disturber

in case of a high risk. On the highest level there is one

skill called main behavior that activates the head movement

and the pick and place sequence. The parametrization of

the high-level skills is chosen in a way that they switch

the activation of lower-level skills not only according to

the state information (goal distance, responsibility, ...), but

also because of the predicted risk that is directly coupled

into the CTRNNs. Thus the risk does not only interrupt the

optimization, but also leads to appropriate behaviors.

Figure 6 illustrates the advantage of the receding horizon

optimization to transparently modify the movement gener-

ated by the MPs. In this example, the risk does not increase,

but an obstacle is placed on the table. The simulation shows

the predicted (red) and optimized trajectory (green) tracked

by the wireframe and solid model, respectively. While the

movement in images 1–4 is being carried out, the succeeding

movement (5–6) is already being optimized starting from the

final (optimal) state in image 4. Thus a smooth movement

without discontinuities is achieved. It can be seen that the

optimization continues to follow the prior in the case of no

violation of the optimization criteria. This is an advantageous

behavior similar to the minimal intervention principle [21]

given the reasonable assumption that the movement genera-

tion layer provides a good initial movement.

In Figure 7, the full behavior of the system is shown

including avoidance of the obstacle (images 6, 9, 10) and

reaction to the predicted risk with three distinct actions (2–

4, 7–8, and 11–12). The sampling interval of the receding

horizon optimization Ts is set to 40 (equals 1 s for ∆t =
25ms) and the optimization takes 2 s of future movement

into account (Th = 80). In case of a detected risk the ongoing

optimization will be interrupted and only the kinematic simu-

lation of the next Ts steps is performed. The simulation takes

approximately Ts · 500µs = 20ms and thus the prediction

cannot start from the current state, but with the state 2

time steps later in order to assure a continuous movement.

Therefore, the reaction time of the system after detecting

the risk is 50ms.2 Together with the reaction, the parallel

optimization starts and an interval of 1 s later, the movement

is optimal again.

Overall the robustness of the system results from various

factors. First, only stable linear attractor dynamics are used

for the low-level MPs. Second, the sequence of MPs is

generated by CTRNNs that do not instantaneously switch,

but rather blend between MPs. Third, the receding horizon

optimization accounts for local adaptation and seamlessly

connects optimal trajectories. There is however no guaran-

teed stability and if the hand-defined top-level sequence does

not cover the situation, the robot motion may converge to a

local optimum.

VI. CONCLUSION AND OUTLOOK

In this paper a new method for generating continuous

robot movements has been presented. It combines the advan-

tages of a hierarchical movement primitive framework and

a receding horizon optimal control approach. The MP layer

is responsible for deciding which sequence of movements

to perform, while the optimization layer can adapt the

movement to the actual situation. In case of disturbances

that require quick reactions, the optimal control layer is

interrupted and the system falls back to the non-optimal

movement provided by the MPs.

2The average human reaction time to simple stimuli is about 200ms, but
including perception which is neglected here.
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Fig. 7. The humanoid robot performs a pick and place sequence that is continuously optimized for avoiding joint limits, self-collisions, and collisions
between the object and the obstacle. Three times (2–4, 7–8, 11–12) a human disturbs the robot by getting close to the object. The system interrupts the
optimization and quickly reacts to the disturbances with three different movements according to which is feasible in the respective situation.

The proposed system fulfills four desirable properties:

First, it continuously and without interruption optimizes the

movement wrt. the current situation. Second, the optimiza-

tion takes a future time horizon into account and thus can

adapt the movement more effectively than the reactive MPs

themselves. Third, the system optimizes the full movement

that results from an arbitrary sequential or parallel activation

of MPs. And fourth, the optimal control layer can be inter-

rupted in situations that require quick reactions and where

optimality is only the second concern.

Future work will focus on a closer integration of the two

layers.
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