
Multi-Robot Planning Under Uncertainty with
Congestion-Aware Models

Charlie Street

Oxford Robotics Institute, University of Oxford

Oxford, UK

cstreet@robots.ox.ac.uk

Bruno Lacerda

Oxford Robotics Institute, University of Oxford

Oxford, UK

bruno@robots.ox.ac.uk

Manuel Mühlig

Honda Research Institute Europe GmbH

Offenbach, Germany

manuel.muehlig@honda-ri.de

Nick Hawes

Oxford Robotics Institute, University of Oxford

Oxford, UK

nickh@robots.ox.ac.uk

ABSTRACT
When planning for multi-robot navigation tasks under uncertainty,

plans should prevent robots from colliding while still reaching their

goal. Solutions achieving this fall on a spectrum. At one end are

solutions which prevent robots from being in the same part of the

environment simultaneously at planning time, ignoring the robots’

capabilities to manoeuvre around each other, whilst at the other

end are solutions that solve the problem at execution time, relying

solely on online conflict resolution. Both approaches can lead to

inefficient behaviour. In this paper, we present a novel framework

in the middle of this spectrum that explicitly reasons over the effect

the presence of multiple robots has on navigation performance. We

refer to this effect as congestion. We present a structure, called the

probabilistic reservation table, which summarises the plans of robots,

allowing us to probabilisticallymodel congestion.We showhow this

structure can be used for planning by proposing an approach that,

for each robot, sequentially builds and solves a Markov decision

process where the transition probabilities are obtained by querying

the probabilistic reservation table. We carry out experiments on

synthetic data and in simulation to show the effectiveness of our

framework.

KEYWORDS
Multi-robot systems; Planning under uncertainty; Markov models;

Temporal uncertainty

ACM Reference Format:
Charlie Street, Bruno Lacerda, Manuel Mühlig, and Nick Hawes. 2020. Multi-

Robot Planning Under Uncertainty with Congestion-Aware Models. In Proc.
of the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS,

9 pages.

1 INTRODUCTION
In recent years, multi-robot systems have been developed for ware-

houses [13], agriculture [15] and roads [20]. In these environments,

the simultaneous presence of multiple robots in the same area

causes an increase in uncertainty over navigation performance. We

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: A warehouse environment with a topological map
overlaid. The blue circle shows the size of a robot in themap.

refer to the effect of the presence of other robots on the execution

of navigation actions as congestion. For example, Figure 1 shows a

warehouse where robots travelling along the same aisle simultane-

ously will cause congestion. If the aisle is wide enough, the robots

can manoeuvre around each other, with this deviation incurring

some cost. If the aisle is too narrow however, one of the robots may

have to turn back or wait for an unknown amount of time. In the

worst case a robot may become stuck and unable to navigate.

Existing methods that deal with execution-time interactions be-

tween robots fall on a spectrum. On one end are solutions to the

multi-agent path finding (MAPF) problem, which create plans that

prevent robots from ever being at the same location at the same

time [18]. By solving the problem entirely at planning time, the nav-

igation capabilities of the robots, such as their ability to manoeuvre

around each other, are ignored. This can result in inefficient plans

which are too conservative and keep the robots far away from each

other. On the other end of the multi-robot planning spectrum are

motion planning solutions which solve the problem solely at exe-

cution time, by relying on the robots’ ability to move around each

other [3]. However, such solutions do not consider the potential

effects of other robots on navigation performance – in some cases it

may prove more efficient to avoid areas with higher robot density.

In this paper, we propose a method that acts in the middle of

the multi-robot planning spectrum. We reason over the expected

effects of congestion at planning time, allowing robots to take

longer but less congested routes if that proves more efficient. This

assumes a motion planner that can manoeuvre the robots around

each other in some cases. We model the duration of navigation

actions as a continuous stochastic process through the use of phase-

type distributions (PTD) [11]. Given policies defining the routes of

each robot, we can use the PTDs to construct a continuous-time

Markov chain (CTMC) for each robot, which allows us to compute

the probabilities of different levels of congestion occurring at any

location and time. The PTDs, CTMCs and congestion information

are managed in a structure called the probabilistic reservation table
(PRT). Planning is carried out on single-robot Markov decision

processes (MDP) that include the influence of the other robots via

the congestion probabilities obtained from the PRT.

The primary contribution of this paper is the PRT, a novel struc-

ture for modelling congestion. As a secondary contribution we

present a framework for multi-robot planning under uncertainty

that demonstrates the benefits of modelling the behaviour of robot

teams in continuous time with the PRT.

2 RELATEDWORK
Themulti-agentMarkov decision process (MMDP) is an exact model

for multi-agent planning under uncertainty [8]. Though optimal

behaviour can be synthesised from MMDPs, the state space scales

exponentially with the number of robots. Furthermore, MMDPs re-

quire robots to act synchronously. Synchronous execution leads to

suboptimal execution-time behaviour, due to robots having to wait

unnecessarily [28]. In this work we consider actions with continu-

ous stochastic durations, and want robots to act asynchronously.

One method for tackling the problem of scalability in multi-robot

planning is to plan on single-robot models with some knowledge of

the other robots. Claes et al. [13, 14] do this by aggregating the re-

sponses of the other robots via assumptions such as all other robots

being self interested. Zhang et al. [40] also plan on single-robot

models using an iterative procedure where robots consider their

team mates more with every iteration. However, this procedure

assumes no uncertainty in action execution, with the output being a

sequence of actions, which are less robust to the probabilistic nature

of the environment. In this paper, we approximate multi-robot be-

haviour in single-robot models via congestion, and generate policies

for each robot sequentially, with each robot considering those who

plan before it. Such an approximation is common in multi-robot

planning [3, 17, 35]. Similar to [13, 14], our approach computes a

best-response for each robot. The best-response is the best action a

robot can take, assuming the plans of the other robots are fixed. The

quality of plans produced under a sequential planning assumption

is very sensitive to the ordering of agents [35], and determining

an optimal ordering is an NP-hard problem [4]. However, effective

priority orderings have been generated using heuristics [37], as

well as optimisation methods [5], which search through the space

of possible priority orderings. Determining a priority ordering is

not addressed in this paper.

The requirement of synchronisation in MMDPs can be removed

through the use of macro actions [1], which are high level be-

haviours executed asynchronously, with synchronisation occurring

at the level of the controllers that form the macro actions. Alterna-

tively, action durations can be modelled as continuous stochastic

processes, with shifted Poisson distributions [40], exponential dis-

tributions [16, 26], or arbitrary temporal distributions [28].

There exist Markov models which consider continuous time,

such as time-dependent MDPs [9], however approaches to solve

them either scale badly [32] or rely on strong simplifications [24]

that are unsuitable for the problems presented in this paper, such

as deterministic models of action duration.

Solutions to the MAPF problem generate paths for robots to

reach their goals in a discretised environment while not colliding

with each other [18]. Silver [35] solves this problem by using a

structure called a reservation table to store the route information of

the robots, such that subsequent robots can avoid those who have

planned previously. In this paper, we expand upon the reservation

table to allow actions with continuous stochastic durations. MAPF

solutions commonly assume deterministic environments, though

uncertainty has been considered. In [39], a belief space is used,

giving distributions that appear as ‘tails’ over the robot’s location.

The M* MAPF solver [38] is then adapted to plan in the belief

space of each agent, with coordination occurring between robots

likely to collide. In [25], when a robot attempts to navigate, it

fails with some probability, remaining stationary. To handle this,

a set of critical dependencies between robots is computed, which

force some robots to wait until another robot has reached a certain

location. Continuous time has been considered for MAPF in [2]. The

conflict-based search (CBS) algorithm [33] is adapted by replacing

A* search with safe interval path planning [30] for low-level path

planning. Contrary to our work however, the continuous action

durations are assumed to be fixed with no stochasticity. Finally, in

[34], the M* solver is adapted to have soft collision constraints, i.e.

collisions are allowed to occur, at some cost.

3 PRELIMINARIES
We represent the set of distributions over set X by Dist (X).

Topological Map. We represent the environment using a topolog-
ical map with probability distributions over navigation duration.

Definition 3.1. A topological map is a tuple T = ⟨V ,E, ρ⟩, where:
V is a finite set of nodes representing locations in the environment;

E ⊆ V ×V is a set of bidirectional edges which robots can travel on;

and ρ : E × N→ Dist (R≥0) is a function that takes an edge and the

number of robots present on that edge, and returns a distribution

over the duration for an additional robot to traverse that edge.

Markov Decision Processes (MDPs). In this paper, we address

stochastic shortest path (SSP) problems, which are typically repre-

sented as MDPs.

Definition 3.2. An MDP [31] is a tupleM = ⟨S, s̄,A,δ⟩, where
S is a finite set of states, s̄ ∈ S is the initial state, A is a finite

set of actions and δ : S ×A × S → [0, 1] returns the probability of

arriving at state s ′ after taking action a in state s .

If there is at most one action available in each state, the MDP

becomes a discrete-time Markov chain (DTMC).

Definition 3.3. An SSP [27] is defined as an MDP

M = ⟨S, s̄,A,δ⟩, a cost structure c : S × A → R>0 and a set of

goal states G ⊆ S . The goal of an SSP is to find a policy π : S → A
that minimises the expected cost to reach a state in G.

Note that a policy π over an MDPM induces a DTMCMπ
,

where, at each state, the only action available is the policy action.

Continuous-Time Markov Chains (CTMCs). A CTMC models

the continuous-time evolution of a system.

Definition 3.4. A (labelled) CTMC [22] is a tuple

Q = ⟨S, init ,δE ,AP ,Lab⟩, where S is a finite set of states,

init : S → [0, 1] gives the probability of a state being the initial

state, δE : S×S → R≥0 is a rate transition function,AP is a finite set

of atomic propositions, and Lab : S → 2
AP

is a labelling function

that maps states to atomic propositions that hold in that state.

The value of δE (s, s
′) is the rate parameter of an exponential

distribution associated with the transition. Thus, the probability

that the transition fires within time t is 1 − e−δE (s,s
′) ·t

. The exit
rate of a state s in Q is the sum of all outgoing rates from s ,
E (s) =

∑
s ′∈S δE (s, s

′). The probability of leaving state s within

time t is then 1 − e−E (s) ·t .

Phase-Type Distributions (PTDs). PTDs approximate non-

negative continuous distributions using the time taken to reach an

absorbing state in a CTMC.

Definition 3.5. A PTD [29] is a tuple P = ⟨S, init ,δE , s
a⟩, where

S , init and δE are as in a CTMC, and sa ∈ S is the single absorbing

state, i.e. there are no transitions from sa . Further, init (sa) = 0.

Note that in a PTD, the absorbing state cannot be an initial state.

We denote the expected time for P to reach the absorbing state as

E[P], and the set of non-absorbing states of P as NA(P) (the same

applies for a CTMC). Furthermore, the set of all PTDs is denoted P.
To avoid ambiguity, we use a subscript to notate an element

belonging to a model, e.g. SP to represent the state space of PTD

P, or δM to represent the transition function of MDPM.

4 OVERVIEW OF APPROACH
In this section, we formulate the congestion-aware planning prob-

lem and introduce the framework we propose to address it.

Problem 1. Let R = {r1, ..., rn } be a set of robots acting on a
topological map T = ⟨V ,E, ρ⟩, where ri has initial and goal loca-
tions viniti ,v

дoal
i ∈ V . Find policies {π1, ...,πn } that minimise the

makespan, i.e. the time until the last robot reaches its goal.

We assume navigation actions always succeed and lead the robot

to the desired location. Therefore, the uncertainty arises from the

temporal uncertainty over the duration of navigation actions.

We now describe our general approach to approximate solutions

for Problem 1. There is one global entity, the probabilistic reserva-

tion table (PRT). Planning takes place on single-robot models that

take into account probabilistic information about the other robots.

In particular, we take an approximate approach to planning by

minimising the expected time to reach the goal on a time-dependent
MDP which uses expected values for the duration of navigation

actions. In order to plan on single-robot models while not treating

robots independently, we assume robots plan sequentially, follow-

ing a pre-defined priority order, which we assume, w.l.o.g., to be

0 10 20 30 40 50
Duration

0.0

0.1

0.2

0.3

0.4

PD
F

va
lu

e

0 Robots
1 Robot
2 Robots
3 Robots
4 Robots

Figure 2: A set of distributions obtained from the high-
lighted edge of the map in Figure 1. The method for obtain-
ing this data is described in Section 7.

according to the robots’ indices. Thus, robot ri waits until previous
robots r1 to ri−1 have updated the PRT with their policies. Next, ri
takes this information from the PRT, constructs a planning model,

and solves this to obtain a policy πi which minimises the expected

time to reach v
дoal
i , given the information about the routes of the

robots that have planned previously. Information about πi is then
inserted into the PRT, so ri+1 can start planning. Once all robots

have planned, the policies are executed concurrently.

5 MODELLING CONGESTION
In this section, we introduce the PRT as a model of congestion that

considers actions with continuous and stochastic durations.

5.1 Modelling Action Durations
Recall that we model the environment as a topological map

T = ⟨V ,E, ρ⟩, where ρ (e,m) represents the continuous distribu-

tion over the duration of traversing e ∈ E withm other robots on

the edge. In this work, we use PTDs to approximate these duration

distributions. Figure 2 shows a set of PTDs for an edge in Figure 1.

5.2 Congestion Bands
We model levels of congestion in terms of congestion bands.

Definition 5.1. Let e ∈ E and n be the total number of robots. A

set of congestion bands Ce = {c
0

e , c
1

e , ..., c
b
e } is such that:

• c
j
e = [lb

j
e ,ub

j
e]. A congestion band is an interval on the num-

ber of robots, represented by a lower and an upper bound.

If k robots are present on e , where lb
j
e ≤ k ≤ ub

j
e then c

j
e is

the congestion level on that edge.

• c0

e = [0, 0], i.e. a congestion band considering 0 other robots

is always present.

• cbe = [lbbe ,n − 1]. The last congestion band has an upper

bound of n − 1, since at most n − 1 other robots can be

present on an edge.

• lb
j+1

e = ub
j
e + 1. Congestion bands do not intersect and each

possible number of robots fits into exactly one band.

Figure 3: The pipeline for computing the probabilities of
each congestion band on edge e at time t using the PRT. Note,
there may not be a CTMC for all robots at the time of use.

We use congestion bands because there are cases where we do

not observe a significant difference in the effects of congestion

between similar numbers of robots (cf. Figure 2). Using the notion of

congestion bands, we introduce a topological map under congestion.

Definition 5.2. A topological map under congestion is a tuple

TC = ⟨V ,E,C, ρC ⟩, where: C =
⋃
e ∈E Ce ; and ρC : E ×C → P is a

function that maps an edge and congestion band (for that edge) to

a PTD over the duration of traversing that edge.

Given enough data, a larger number of congestion bands gives a

more accurate measure of congestion while increasing the complex-

ity of planning. Furthermore, note that if we consider one conges-

tion band per possible number of robots, we recover Definition 3.1,

but now using PTDs to approximate the duration distributions. This

allows us to exploit efficient algorithms for fitting PTDs [36], whilst

also allowing for the interpretation of robot policies as CTMCs, as

we will describe next. To simplify notation, we will omit subscript

e from congestion band c
j
e if e can be inferred from the context.

5.3 Computing Congestion Probabilities
To support planning, we must compute the probability of each

congestion band occurring on an edge e at time t . The process for
this is shown in Figure 3.

To compute the congestion probabilities, we require information

about the routes of the robots. We use a CTMC Qi to model the

route of robot ri through the topological map. CTMCs are a natural

representation for the continuous-time behaviour of the robots. By

modelling the edge navigation durations as PTDs, we can construct

a CTMC modelling a robot’s route by connecting the PTDs. We can

then exploit methods to analyse transient properties in CTMCs [22]

to compute the probability of observing a congestion band on an

edge at a specific time. We describe the PTD connection process

and subsequent planning procedure in Section 6.

We require the CTMC to be constructed with a labelling function

that represents the robot’s route through the topological map.

Definition 5.3. Let TC be a topological map under congestion.

A route CTMC is a tuple Q = ⟨S, init ,δE ,AP ,Lab⟩, where AP =
E∪{дoal }, i.e. the atomic propositions are the edges of TC as well as

a дoal proposition; and Lab is defined such that all non-absorbing

states in Q, denoted NA(Q), are labelled with a single edge of the

topological map, i.e. the following condition holds:

∀s ∈ NA(Q), |Lab (s) | = 1 ∧ дoal < Lab (s) (1)

States labelled with edge e ∈ E in a route CTMC Qi represent

states for which ri is present on e . This is because states in the

route CTMC are the union of the states of a set of PTDS, where

each PTD represents an edge in ri ’s route. Thus, each state can be

mapped to the edge the PTD it comes from is modelling.

If an absorbing state of the route CTMC represents the successful

completion of a robot’s route it can be labelled with proposition

дoal . Although left to future work, this opens up the possibility

of formally verifying policies, e.g. computing the probability of a

robot reaching its goal within a time bound.

With a set of route CTMCs stored in the PRT, the first step to

computing the congestion probabilities is to consider the probability

that each robot ri is present on edge e at time t , denoted Pri (e@t).
This is shown in the second box of Figure 3.

To compute Pri (e@t), we analyse the route CTMC Qi for robot

ri by computing the transient probabilities over the CTMC, which

returns the probability of being in each state s ∈ SQi at time t ,
denoted Pr (s@t). We can use this information to calculate the

probability Pri (e@t) of robot ri being present on edge e at time t :

Pri (e@t) =
∑

{s ∈SQi | e ∈LabQi (s) }

Pr (s@t) (2)

In practice, existing software can be used to obtain the transient

probabilities. In this work, we use the PRISM model checker [23].

We compute the edge presence probabilities using only the route

CTMCs of individual robots. This assumes that all necessary con-

gestion information for ri is contained in Qi . However, when new

route CTMCs are added to the PRT, the true probabilities of conges-

tion will change. By making the assumption that the robots can be

considered sequentially, we treat a robot’s route as fixed at the point

of insertion into the PRT. Whilst this does not hold in practice, this

is part of the modelling assumption we make. To reason over the

true congestion probabilities would require a joint model, which we

are explicitly avoiding in favour of scalability. Furthermore, as we

show in the experiments in Section 7, this assumption still allows

our planning framework to effectively reason over congestion.

The next step in computing the congestion probabilities is to use

the presence probabilities to compute a discrete distribution over

how many other robots are on edge e at time t , i.e. a distribution
over how congested an edge will be. This can be seen in the third

box in Figure 3. To compute this, we use the Poisson-binomial

distribution, which models the outcome of n Bernoulli trials, with

the random variable differing in each trial [6]. Here, the Bernoulli

random variables are over the presence of each robot on edge e
at time t , and are distributed by the probabilities Pri (e@t). We

denote the probability given by the Poisson-binomial distribution

of q other robots being on edge e at time t by Pr (q | e@t).
The final step in computing the congestion probabilities is to

merge the probabilities over the number of robots on edge e at

time t into congestion bands, as seen in the bottom box of Figure 3.

The probability Pr (c j | e@t) of experiencing congestion band c j

on edge e at time t is given by:

Pr (c j | e@t) =

ub je∑
q=lb je

Pr (q | e@t) (3)

In some cases, very small congestion probabilities are observed

that bear no practical gain, yet increase the complexity of planning.

Therefore, we define a pruning threshold ε and set all congestion

probabilities below ε to 0. The distribution is then normalised.

5.4 Defining the PRT
A PRT is initialised with the set of robots R, the topological map

TC , and pruning threshold ε . A PRT is a table with an entry for

each robot ri ∈ R. An entry in the table, PRT(ri), stores a route

CTMC Qi representing ri ’s route through the topological map. Two

functions are provided by the PRT: insert and conд. The function
insert (ri ,Qi) inserts route CTMC Qi into the entry for ri in the

PRT. The function conд(ri , e, j, t) returns the probability that ri
experiences congestion band c j on edge e at time t , calculated
according to the method described in Figure 3. Note that conд
returns the congestion probability for ri given the entries of all

other robots in the PRT, i.e., conд reflects the current state of the

PRT rather than the congestion information fixed in Qi .

6 PLANNING UNDER CONGESTION
6.1 Obtaining Robot Policies
The planning problem for each robot ri is to synthesise a policy that

minimises the expected time to reach v
дoal
i , taking into account

the congestion probabilities and the continuous stochastic models

of action duration. In order to tackle this time dependency whilst

still being able to scale to reasonable sized models, we build an

approximate MDP per robot where each edge traversal has an

outcome per congestion band, and the duration of this outcome is

the expected duration of the congestion band.

Definition 6.1. Given topological map TC = ⟨V ,E,C, ρC ⟩, time

bound T ∈ R≥0, and the PRT, we define robot ri ’s MDP asMi =

⟨S, s̄,A,δ⟩, where:

• S = V ×R≥0. States are a product of a topological map node

and expected time of arrival to that node.

• s̄ = (viniti , 0), i.e. the robot’s initial location at time 0.

• A = E. The actions are the edges of the topological map.

• The transition function δ is defined such that for each con-

gestion band on an edge, there is a successor state defined

by the location reached from that edge, and time value equal

to the previous state’s time plus the expected duration of

the edge under that congestion band. Robots are assumed

to start the next edge immediately after finishing the pre-

vious one. The probability of reaching this successor is the

probability of that congestion band being experienced at the

time of arrival to that edge. Formally, for states s = (v, t),
s ′ = (v ′, t ′), and edge e:

δ (s, e, s ′) =

conд(ri , e, j, t) if e = (v,v ′), t < T and

t ′ = t + E[ρC (e, c
j)]

0 otherwise

(4)

where j ∈ {0, ..., |Ce | − 1}.

By representing time in the state, the state space becomes infinite.

However, the state space is also discrete as the feasible time values

for an MDP state are based on sums of expected values of the PTDs.

Therefore, to keep the state space finite, we introduce a bound

T ∈ R≥0, where any MDP state with a time value greater than T
is made a dead end, i.e. have no successors. This makes the state

space finite as any path that has not reached the goal by T , such
as one looping around two edges indefinitely, is cut off. We now

define the planning problem for ri as an SSP overMi .

Definition 6.2. The SSP for robot ri is defined as:

• An MDPMi according to Definition 6.1.

• A cost function ci : (V × R≥0) × E → R>0 that gives the

expected duration over all congestion bands:

ci ((v, t), e) =
∑

j ∈{0, ..., |Ce |−1}

conд(ri , e, j, t) · E[ρC (e, c
j)] (5)

• A set of goal states Gi defined as:

Gi = {(v, t) ∈ V × R≥0 | v = v
дoal
i and t < T } (6)

To solve the SSP efficiently, we use labelled real time dynamic

programming (LRTDP) [7]. LRTDP is a trial-based heuristic search

method for MDPs that uses an admissible heuristic hi : S → R≥0

to initialise the value of states, so states unlikely to contribute to

the optimal policy are not explored. We define this heuristic as:

hi ((v, t)) = min_cost(v,vдoali) (7)

In Equation 7, min_cost returns the minimal cost to travel from

v to v
дoal
i , which can be computed using the Floyd-Warshall algo-

rithm [19]. The cost of each edge e inmin_cost is set to E[ρC (e, c
0)],

the expected duration assuming no congestion.

If T is set higher than any realistic cost of reaching the goal, the

model used for planning is a finite-horizon SSP with avoidable dead
ends, as there always exists a policy from the initial state that can

reach a goal state while never visiting a dead end. Thus, LRTDP

trials that visit a dead end will always terminate, and so it can be

used to synthesise optimal policies [21].

To execute the obtained policies, the executor needs to be able to

define the current state. This poses an issue when time is included

in the MDP state as a robot will never arrive at a node at precisely

a time in one of the states. To solve this, we choose the successor

with time value closest to the true arrival time. This ensures we

can always identify the current state to obtain the policy action.

6.2 Constructing a Robot’s Route CTMC
Given our presented planning solution, in Algorithm 1 we detail

how to construct a route CTMC Qi for robot ri that models the exe-

cution of policy πi onMDPMi . Algorithm 1modifies the algorithm

presented in [12] for cases where non-determinism is resolved.

The first step is to compute the MDP transitions reachable under

policy πi , as seen in line 2. This is equivalent to the transitions of the
induced DTMC. To build Qi , we then iterate over these transitions.

Each transition is associated with a single PTD, which is added to

Qi in lines 5-7. Function getPTD returns the PTD for a transition,

and addStatesAndTransitions adds all states in NA(P) (the non-
absorbing states of P) to Qi as well as the transitions between them.

These states are then labelled with the edge P models.

(a) The induced DTMC. (b) PTDs for the edges used in the MDP/DTMC. (c) The route CTMC.

Figure 4: The process of generating a route CTMC from a robot’s policy.

Algorithm 1: Route CTMC Construction

Input :MDPMi , policy πi , PTDs P, topological map TC
Output :Route CTMC Qi

1 begin
2 Tr ← {(s, s ′) ∈ SMi × SMi | δMi (s,πi (s), s

′) > 0}

3 for (s, s ′) ∈ Tr do
4 // Add the PTD for the transition
5 P ← getPTD(s, s ′)

6 addStatesAndTransitions(NA(P))

7 ∀sP ∈NA(P) ,LabQi (sP) = {πi (s)}

8 // If s ′ is a dead-end or goal state inMi
9 if s ′ has no action in πi then

10 addAbsorbingStateAndTransitions(sa
P
)

11 if s ′ is a goal state inMi then
12 LabQi (s

a
P
) = {дoal }

13 // Set the initial distribution of Qi
14 if s = s̄Mi then
15 for sP ∈ NA(P) do
16 initQi (sP) = δMi (s,πi (s), s

′) · initP (sP)

17 // Connect the PTDs
18 pre ← {s ′′ ∈ SMi | δMi (s

′′,πi (s
′′), s) > 0}

19 for s ′′ ∈ pre do
20 Ppre ← getPTD(s ′′, s)

21 for sPpre ∈ NA(Ppre) do
22 for sP ∈ NA(P) do
23 δE,Qi (sPpre , sP) = δE,Ppre (sPpre , s

a
Ppre

) ·

δMi (s,πi (s), s
′) · initP (sP)

24 return Qi = ⟨SQi , initQi ,δE,Qi ,E ∪ {дoal },LabQi ⟩

By default, the absorbing state of PTD P is not added to Qi ,

as P should be connected to PTDs modelling the next edge to

be traversed. However, if the MDP transition under consideration

reaches the goal or a dead-end, the absorbing state should be added

as the robot’s route is finished. This is seen in lines 9-12. Function

addAbsorbingStatesAndTransitions adds absorbing state sa
P
to

Qi and all transitions to it. If a goal state is reached in the MDP, sa
P

is labelled with {дoal }.
To compute the initial state distribution for Qi , we consider the

PTDs for all MDP transitions outgoing from s̄Mi . For a state in

one of these PTDs P, its initial state probability in Qi is its initial

probability in P weighted by the probability of the associated MDP

transition. This is shown in lines 14-16.

The final component of Algorithm 1 is to connect the PTDs to

model the probabilistic outcomes of the MDP, and to sequence them

to represent the robot’s route. This is shown in lines 18-23. If a PTD

P in the route CTMC models MDP transition (s, s ′), P needs to be

connected to the successor PTDsmodelling the transitions outgoing

from s ′. For state sP in P, a transition from sP to sa
P
is now split

into multiple transitions. These go from sP to the initial states of

the successor PTDs. For a state sP in P, and sP′ in successor PTD

P ′, the rate between the two states is the original rate from sP to

sa
P
in P multiplied by the initial probability of sP′ in P

′
, weighted

by the probability of the MDP transition that P ′ models.

In Figure 4, we provide an example to demonstrate Algorithm 1.

Figure 4a shows the DTMC induced by a policy on an MDP, anno-

tated with actions and congestion bands. Figure 4b shows the PTDs,

with absorbing states represented by concentric circles. Figure 4c

shows the resulting route CTMC. Note how, in this example the λ1

transition to the absorbing state in the PTD for c0

e1

is split into 4

transitions in the route CTMC. However, as the exit rate from that

state is still λ1, we still leave that state in the same amount of time.

7 EXPERIMENTS
In this section we analyse the scalability and execution-time per-

formance of the presented planning framework. All experiments

in this section are run on Ubuntu 16.04, with an Intel Core i7-8700

CPU@3.2GHz, and 16GB of RAM. All software is written in Python,

except for PRISM [23], which is written in Java/C++.

Scalability. To test the scalability of the framework, we ran plan-

ning on three maps using synthetic data. The three maps were a

5 × 5 and 15 × 15 warehouse map (see Figure 5a, the 15 × 15 map

is identical but scaled up), as well as a warehouse with a tunnel,

designed to produce congestion (see Figure 5b).

For these experiments, the underlying duration distributions

were created using lognormals, where for each successive number

of robots, the mode of the distribution increases and the distribution

(a) A 5×5 warehouse. (b) Warehouse with tunnel.

Figure 5: The maps used for synthetic experiments.

has a higher variance, as we observe in practice. 1000 samples were

taken from each, and PTDs were fit to these using the method

outlined by Thummler et al. [36]. For each edge we defined four

congestion bands, set to [0, 0], [1, 3], [4, 5], [6,n−1]. All edges follow

the same distributions, with minor variations made on each edge to

ensure a representative state space. In the planning framework, the

PRT pruning threshold is ε = 10
−4
, the MDP time bound T = 200

and LRTDP is run until it converges or 100 trials are run. The

scalability is measured in terms of total planning time, which is the

time taken from the first robot starting to plan to the time at which

the last robot finishes planning. This includes the time for CTMC

insertion into the PRT, as well as the computation of congestion

probabilities to define the transition functions of the MDPs.

To analyse the scalability of the framework, 40 random configu-

rations of robots were generated for each of the 3 environments for

2-15 robot problems, by starting with 40 random 2 robot configura-

tions for each map, and then adding one randomly configured robot

to each to obtain the 3 robot configurations etc. The results of these

experiments are displayed in Figure 6. The results show there to be a

sub-exponential increase in the total planning time on all maps, and

so this framework mitigates the exponential state space increase

seen when using joint models. Larger maps give longer planning

times, as the routes are typically longer, increasing the problem

size. The variance in the results is due to the variance in congestion

experienced across the problem configurations used. If there is less

congestion, the branching factor of the MDPs will decrease as the

variance over congestion is reduced. With a lower branching factor,

LRTDP requires fewer trials to converge and fewer computations

in the PRT will be required, reducing planning time. For example,

though the 5 × 5 warehouse and warehouse with tunnel maps are

of a similar size, the times for the latter are generally longer, as the

tunnel causes congestion. Across all maps and problem configura-

tions, approximately half of the planning time was spent in the PRT

(i.e. computing congestion probabilities), with a median of 51%.

Execution Time Performance. To test the performance of the

obtained policies at execution time, we simulate a 5 robot setup

in ROS using the Stage simulator, using the map seen in Figure 1.

All robots use the ROS move_base motion planner. Having two

tunnels on the map allows robots to take the longer tunnel if the

shorter one is too congested. PTDs were fit from data collected in

simulation, by repeatedly sending robots to varying goal locations

on the map. Every time a robot traversed an edge, the duration and

number of robots on the edge was recorded. To ensure enough data

was collected to be representative, we focused collection on a small

0 1 2 3 4 5

Congestion-Aware 1.0 1.0 0.95 0.95 0.8 0.8

MAPF Baseline 1.0 0.95 0.95 1.0 0.95 1.0

Independent Baseline 1.0 1.0 0.95 0.95 0.8 0.25

Table 1: The success rate of each method as the number of
robots sent to the other side of the map increases.

subset of edges, and reused this data for edges of the same length.

Figure 2 shows an example set of PTDs from this map. We use 5

congestion bands, one for each number of robots.

To judge the execution-time performance, we compare our frame-

work against two baselines. The first baseline treats all robots inde-

pendently, i.e. the robots ignore each other at planning time. When

using this baseline all robots will follow their shortest path to the

goal. This baseline relies only on the motion planner, as the inter-

actions between robots are ignored at planning time. The second

baseline acts similarly to our framework, but will only consider

an edge at planning time if the probability of any congestion is

less than a threshold ϵ , taken to be 0.1 in this experiment. If this is

the case, the MDP states that the robot deterministically traverses

the edge with no congestion. This baseline is similar to a MAPF

approach as it almost entirely avoids interactions between robots

at planning time. The threshold ϵ is chosen to be as low as possible

while still allowing plans to be generated. For traditional MAPF

solvers this threshold would be 0, but given the uncertainty in our

models this would result in no plans being found. These baselines

mirror the two ends of the multi-robot planning spectrum.

We evaluated 6 problem configurations on each of the 3 meth-

ods. For each problem, each method was run 20 times. Across all

problems, 3 robots begin on the larger side of the map and 2 on the

smaller side. Problem 0 sets the goal location of each robot on the

same side of the map as their initial location. For problems 1-5, the

problem number states how many robots have to travel to the other

side of the map. If there are more robots switching sides of the map,

there will be a higher level of congestion. A run is considered a

failure if either the motion planner of one of the robots fails, or the

robots do not reach their goals within 5 minutes. In either case this

suggests robots are unable to navigate due to the presence of other

robots. In this experiment we measure the makespan, i.e. the time

until the last robot reaches its goal.

In Table 1, we show the success rates for the 3 methods over the

6 problem configurations. The low congestion problems see the

robots always succeed as there is very little congestion in the envi-

ronment. In the later problems, robots begin to fail as move_base
is incapable of consistently dealing with multi-robot interactions

when there is heavy congestion. Since the MAPF baseline is de-

signed to avoid congestion it succeeds almost all of the time, with

any failures being accountable to the small chance that heavy con-

gestion can still occur with this baseline, as it is still a stochastic

model. The independent framework fails frequently as congestion

increases, as it plans for all robots to travel through the same tunnel.

The congestion-aware framework shows amuch smaller decrease in

success rate, as it routes robots through separate tunnels, reducing

the chance of creating scenarios move_base cannot handle.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number Of Robots Planning

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l P
la

nn
in

g
Ti

m
e

(s
)

(a) 5 × 5 warehouse.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number Of Robots Planning

0

200

400

600

800

1000

1200

To
ta

l P
la

nn
in

g
Ti

m
e

(s
)

(b) 15 × 15 warehouse.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number Of Robots Planning

0

100

200

300

400

500

To
ta

l P
la

nn
in

g
Ti

m
e

(s
)

(c) Warehouse with tunnel.

Figure 6: The scalability across the warehouse maps.

0 1 2 3 4 5
Number of Robots Travelling to Other Side of Map

50

100

150

200

250

M
ak

es
pa

n(
s)

Congestion-Aware
MAPF Baseline

Figure 7: The makespans and expected makespans (circles)
for the congestion-aware method and the MAPF baseline.

The success rates can be seen to describe how each of the 3

methods handle congestion. The independent baseline fails often as

it does not handle congestion at all. TheMAPF baseline almost never

fails, as it does not exploit the fact that robots can navigate through

certain levels of congestion. The success rate of the congestion-

aware method shows how it will route robots through congested

edges if appropriate. The failures caused by move_base are not

represented in our planning models, though failures were recorded

during data collection. Incorporating the failure of the continuous

motion planner into our planning models is left to future work.

Figure 7 shows the makespans for the successful runs across all 6

problems for the congestion-aware method and MAPF baseline, as

well as the expected makespans computed at planning time. For the

low congestion problems, both methods route the robots through

their shortest paths. When 2 and 5 robots are required to travel

through the tunnels the congestion-aware framework outperforms

the MAPF baseline, which sends robots through unnecessarily long

routes to avoid congestion. When 3 and 4 robots travel through the

tunnels, bothmethods perform similarly. This shows the congestion-

aware framework can take longer routes if deemed most efficient.

There is little change in the makespan for the congestion-aware

framework between 3 and 5 robots travelling through the tunnel,

displaying how this method can effectively distribute robots across

the environment. In congested environments there is a significant

difference between the expected and actual makespans for the

congestion-aware framework. This shows the effect of move_base

being unable to deal with multi-robot interactions. The congestion-

aware method assumes a motion planner that can deal with such

interactions and always succeed, whereas move_base often fails.

Though the PTDs were obtained using move_base, the recorded
durations of edge traversals do not take into account the frequent

occurrence of move_base sending robots back to previous edges to

avoid the congestion. These failures increase the actual makespan

from the expected value obtained at planning time.

In summary, the congestion-aware framework outperforms both

ends of the multi-robot planning spectrum, represented by the two

baselines. It outperforms the independent baseline as the robots

reach their goals successfully significantly more often with the

congestion-aware framework. The congestion-aware framework

outperforms the MAPF baseline as it plans such that the robots

reach their goals in the same time or less than the baseline, by

exploiting the motion planner’s ability to handle congestion.

8 CONCLUSION
In this paper, we have presented a framework for multi-robot plan-

ning under uncertainty that allows robots to reason over continuous

stochastic action durations and congestion. Though we have fo-

cused on robot navigation, this framework is applicable to general

actions and shared resources. In this work, we have approximated

a solution for uncertain action durations in a time-dependent MDP.

This approach allows us to highlight the benefit of using the PRT

in planning. In future work we will investigate more accurate plan-

ning approaches and include congestion models from the context

of traffic assignment, such as link capacity functions [10], into our

planning models. We will also integrate our framework with a mo-

tion planner better suited to handle congestion, and explore how

to provide formal guarantees over the performance of the robots.

ACKNOWLEDGMENTS
Street is funded by the Honda Research Institute Europe GmbH.

Lacerda is funded by UK Research and Innovation and EPSRC

through the Robotics and Artificial Intelligence for Nuclear (RAIN)

research hub [EP/R026084/1].

REFERENCES
[1] Christopher Amato, George D Konidaris, and Leslie P Kaelbling. 2014. Planning

with macro-actions in decentralized POMDPs. In Proceedings of the 2014 Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).
International Foundation for Autonomous Agents and Multiagent Systems, 1273–

1280.

[2] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni Stern. 2019.

Multi-agent Pathfinding with Continuous Time. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI). 39–45.

[3] Andrea Bajcsy, Sylvia L Herbert, David Fridovich-Keil, Jaime F Fisac, Sampada

Deglurkar, Anca D Dragan, and Claire J Tomlin. 2019. A Scalable Framework

For Real-Time Multi-Robot, Multi-Human Collision Avoidance. In Proceedings of
the 2019 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
936–943.

[4] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. 2001. Optimizing

schedules for prioritized path planning of multi-robot systems. In Proceedings of
the 2001 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
271–276.

[5] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. 2002. Finding and

optimizing solvable priority schemes for decoupled path planning techniques for

teams of mobile robots. Robotics and Autonomous Systems 41, 2-3 (2002), 89–99.
[6] William Biscarri, Sihai Dave Zhao, and Robert J Brunner. 2018. A simple and fast

method for computing the Poisson binomial distribution function. Computational
Statistics & Data Analysis 122 (2018), 92–100.

[7] Blai Bonet and Hector Geffner. 2003. Labeled RTDP: Improving the Conver-

gence of Real-Time Dynamic Programming. In Proceedings of the Thirteenth
Interanational Conference on Automated Planning and Scheduling (ICAPS). 12–21.

[8] Craig Boutilier. 1996. Planning, Learning and Coordination in Multiagent De-

cision Processes. In Proceedings of the 6th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK ’96). Morgan Kaufmann Publishers Inc., 195–

210.

[9] Justin A Boyan and Michael L Littman. 2001. Exact solutions to Time-Dependent

MDPs. In Proccedings of the Advances in Neural Information Processing Systems
(NIPS). 1026–1032.

[10] David Branston. 1976. Link capacity functions: A review. Transportation Research
10, 4 (1976), 223–236.

[11] Peter Buchholz, Jan Kriege, and Iryna Felko. 2014. Input Modeling with Phase-Type
Distributions and Markov Models: Theory and Applications. Springer.

[12] Yuliya Butkova, Ralf Wimmer, and Holger Hermanns. 2017. Long-Run Rewards

for Markov Automata. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Springer,
188–203.

[13] Daniel Claes, Frans Oliehoek, Hendrik Baier, and Karl Tuyls. 2017. Decentralised

Online Planning for Multi-Robot Warehouse Commissioning. In Proceedings of
the 16th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). International Foundation for Autonomous Agents and Multiagent

Systems, 492–500.

[14] Daniel Claes, Philipp Robbel, Frans A Oliehoek, Karl Tuyls, Daniel Hennes, and

Wiebe Van der Hoek. 2015. Effective Approximations for Multi-Robot Coor-

dination in Spatially Distributed Tasks. In Proceedings of the 2015 International
Conference on Autonomous Agents andMultiagent Systems (AAMAS). International
Foundation for Autonomous Agents and Multiagent Systems, 881–890.

[15] Gautham Das, Grzegorz Cielniak, Pal From, and Marc Hanheide. 2018. Dis-

crete Event Simulations for Scalability Analysis of Robotic In-Field Logistics in

Agriculture–A Case Study. In Proceedings of the IEEE International Conference on
Robotics and Automation, Workshop on Robotic Vision and Action in Agriculture
(WRVAA).

[16] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. 2010. On Probabilistic

Automata in Continuous Time. In Proceedings of the 2010 25th Annual IEEE
Symposium on Logic in Computer Science. IEEE, 342–351.

[17] Fatma Faruq, David Parker, Bruno Lacerda, and Nick Hawes. 2018. Simultaneous

Task Allocation and Planning Under Uncertainty. In Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
3559–3564.

[18] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg,

Guni Sharon, Nathan Sturtevant, GlennWagner, and Pavel Surynek. 2017. Search-

Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary and

Challenges. In Proceedings of the Tenth Annual Symposium on Combinatorial
Search (SoCS). 29–37.

[19] Robert W Floyd. 1962. Algorithm 97: Shortest Path. Commun. ACM 5, 6 (1962),

345.

[20] Jesper Karlsson, Cristian-Ioan Vasile, Jana Tumova, Sertac Karaman, and Daniela

Rus. 2018. Multi-Vehicle Motion Planning for Social Optimal Mobility-on-

Demand. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 7298–7305.

[21] Andrey Kolobov, Mausam, and Daniel S. Weld. 2012. A Theory of Goal-Oriented

MDPs with Dead Ends. In Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence (UAI’12). 438–447.

[22] Marta Kwiatkowska, Gethin Norman, and David Parker. 2007. Stochastic model

checking. In Formal Methods for the Design of Computer, Communication and
Software Systems: Performance Evaluation (SFM’07). Springer, 220–270.

[23] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of

Probabilistic Real-time Systems. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV’11). Springer, 585–591.

[24] Lantao Liu and Gaurav S Sukhatme. 2018. A Solution to Time-Varying Markov

Decision Processes. IEEE Robotics and Automation Letters 3, 3 (2018), 1631–1638.
[25] Hang Ma, TK Satish Kumar, and Sven Koenig. 2017. Multi-Agent Path Finding

with Delay Probabilities. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence. 3605–3612.

[26] Masoumeh Mansouri, Bruno Lacerda, Nick Hawes, and Federico Pecora. 2019.

Multi-Robot Planning Under Uncertain Travel Times and Safety Constraints.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI). 478–484.

[27] Mausam and Andrey Kolobov. 2012. Planning with Markov Decision Processes: An
AI Perspective. Morgan & Claypool Publishers.

[28] João Vicente Messias, Matthijs Spaan, and Pedro Lima. 2013. GSMDPs for Multi-

Robot Sequential Decision-Making. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence. 1408–1414.

[29] Hiroyuki Okamura, Ryo Watanabe, and Tadashi Dohi. 2014. Variational Bayes

for Phase-Type Distribution. Communications in Statistics – Simulation and
Computation 43, 8 (2014), 2031–2044.

[30] Mike Phillips and Maxim Likhachev. 2011. Sipp: Safe Interval Path Planning for

Dynamic Environments. In Proceedings of the 2011 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 5628–5635.

[31] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc.

[32] Emmanuel Rachelson, Patrick Fabiani, and Frédérick Garcia. 2009. Timdppoly:

An Improved Method for Solving Time-dependent MDPs. In Proceedings of the
2009 21st IEEE International Conference on Tools with Artificial Intelligence. IEEE,
796–799.

[33] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40–66.

[34] Rongye Shi, Peter Steenkiste, and Manuela M Veloso. 2019. SC-M*: A Multi-

Agent Path Planning Algorithm with Soft-Collision Constraint on Allocation of

Common Resources. Applied Sciences 9, 19 (2019), 4037.
[35] David Silver. 2005. Cooperative Pathfinding. In Proceedings of the first AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE).
AAAI Press, 117–122.

[36] Axel Thummler, Peter Buchholz, and Miklos Telek. 2006. A Novel Approach for

Phase-Type Fitting with the EM Algorithm. IEEE Transactions on Dependable and
Secure Computing 3, 3 (2006), 245–258.

[37] Jur P Van Den Berg and Mark H Overmars. 2005. Prioritized Motion Planning

for Multiple Robots. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 430–435.

[38] GlennWagner andHowie Choset. 2015. Subdimensional expansion formultirobot

path planning. Artificial Intelligence 219 (2015), 1–24.
[39] GlennWagner and Howie Choset. 2017. Path Planning for Multiple Agents Under

Uncertainty. In Proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling (ICAPS). 577–585.

[40] Shiqi Zhang, Yuqian Jiang, Guni Sharon, and Peter Stone. 2017. Multirobot sym-

bolic planning under temporal uncertainty. In Proceedings of the 16th International
Conference on Autonomous Agents andMultiagent Systems (AAMAS). International
Foundation for Autonomous Agents and Multiagent Systems, 501–510.

