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Abstract— This paper presents an effective method for plan-
ning and optimizing robot motions in joint space using via-
points. The via-point formulation allows for a sparse movement
representation which is inherently smooth according to a min-
imum jerk criterion. In this research we focus on two aspects.
First, we present an initialization method to find a feasible
number of via-points and their distribution in time. This
initialization takes the difficulty of the planning problem into
account and finds a tradeoff between representation complexity
(number of via-points) and optimization time. Second, we
propose a two-step optimization approach to improve the via-
point parameters to satisfy constraints over the whole motion
duration. We show that our methods generate feasible and
smooth robot motions with a high success rate for tasks of
varying complexity. The methods are evaluated in simulation
using four different scenarios with two different robots, a 7-DOF
robot arm and a 16-DOF humanoid upper body. Additionally,
the experiments with the robot arm are shown in a real-world
experiment.

I. INTRODUCTION

With an increasing complexity of both, robots and the
environment in which they act, it becomes more and more
difficult to efficiently generate smooth robot motions. This is
called the problem of motion planning which refers to finding
a movement trajectory for a many-degrees-of-freedom robot
to reach a certain goal. Additional to reaching the goal, a
variety of constraints, such as collision avoidance and the
robot’s joint limitations have to be considered over the whole
motion duration.

One successful way of tackling the problem is to
parametrize the trajectory and to formulate motion planning
as an optimization problem. For example, the authors of [1]
propose an optimization scheme for trajectories that are
represented as a sequence of task space attractors. Another
approach is the work presented in [2] where the trajectory is
represented as uniformly distributed waypoints that are opti-
mized with their proposed method of Covariant Hamiltonian
Optimization for Motion Planning (CHOMP). The same tra-
jectory representation is used in [3] that proposed Stochastic
Trajectory Optimization for Motion Planning (STOMP) that
shows an improvement of the success rate of CHOMP. To ef-
ficiently calculate an optimal trajectory, all of the mentioned
methods apply gradient-based unconstrained optimization.
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This however does not guarantee satisfying the constraint
conditions, since constraints are only considered as a part of
a cost function.

To overcome this problem, constrained optimization has
potential in dealing with constraint conditions over the whole
motion duration. Generally, constraints such as collision
avoidance, balancing, or joint limit avoidance are considered
as inequality constraints, while the conditions for reaching
a target are represented by equality constraints. Sequential
Quadratic Programming (SQP) [4] has often been applied
to resolve the problem of motion planning for humanoid
robots, which typically have many degrees of freedom [5].
It has been shown that SQP is able to handle different
constraints, such as motions with many physical contacts [6].
Recently, Quadratic Programming (QP) formulations even
have been used for real-time constrained optimization for
planning humanoid motions in task-space [7].

When applying such gradient-based constrained optimiza-
tion methods, the initialization of the trajectory is an impor-
tant topic. Typically a two-stage approach for motion plan-
ning is proposed, such as in [8]. They initialize the trajectory
using a constrained path planning algorithm and optimize
the planned trajectory for smoothness and feasibility using
SQP. The computational cost of their optimization however is
very high as every timestep of the initial trajectory is taken
into account. Recently, also the authors of [9] emphasized
the importance of initialization in the optimization process.
They manually select a fixed number of waypoints and
prepare multiple initial trajectories in form of straight lines
between start, waypoint, and goal. The obvious drawback
of this approach is that the number of waypoints has to
be designed and it might be required to generate more
complex initial trajectories using more waypoints if the task
complexity is higher. Another approach of initializing the
trajectory is the use of sampling-based planning methods
[10], [11]. They have for example been applied to planning
humanoid motions such as dual-arm manipulation tasks [12].
Additionally, it is possible to plan smooth trajectories by
employing postprocessing approaches [13]. The referenced
work also mentions the importance of an initial path to avoid
convergence to a suboptimal solution.

The paper at hand is based on our earlier works [14], [15]
in which trajectories are parametrized using via-points. The
via-point representation has its origin in the analysis of hu-
man motor skills, such as reaching movements of the human
arm. It has been found that dynamic movements of a human
can be expressed by assigning a number of via-points and
calculating joint trajectories using optimization [16], [17].



Additionally, via-points showed to be useful for transferring
motions from a human demonstration to a redundant robot
manipulator for performing skillful tasks [18]. In motion
planning for robots, a via-point representation can be used for
assigning sufficient conditions to satisfy constraint conditions
of the movement. An advantage of the via-point representa-
tion is that via-points, as an optimization parameter, are ex-
plicitly associated with some physical conditions. Indeed, the
via-point parameters consist of the position and velocity in
joint space at a specific timestep. Furthermore, in our work,
via-points are connected using fifth-order polynomials that
describe a minimum jerk criterion. Therefore, the smoothness
of the overall trajectory is always guaranteed. In our previous
work, we applied optimization methods to plan whole-body
motions that fulfill various constraints. In that case, the
specification of the via-points and deciding for an appropriate
number of via-points are essential problems. However, only
a fixed number of via-points was used and it was assumed
that the timings of the via-points were appropriately given.

In this research, we want to improve our past work by
two aspects. First, we consider the estimation of the required
number of via-points and their timings in an initialization
procedure. We propose an initialization method that can
decide for an appropriate number of via-points and their
timings depending on the complexity of the task. Second,
we sequentially solve a two-step gradient-based constrained
optimization problem. In a first optimization step, inequality
constraints are considered as part of the cost function, while
in the second step they are represented as hard constraints.
It is shown that this approach can lead to better solutions
in complex situations than constrained optimization alone
as it can better overcome local minima. We apply our
motion planning framework to plan reaching tasks with a
7-DOF robot arm and bi-manual reaching tasks for a 16-
DOF humanoid upper body respectively in two scenarios of
different complexity. It is shown that the proposed methods
yield a high success rate for each scenario compared to an
initialization using straight-line trajectories.

II. MOVEMENT GENERATION USING
VIA-POINTS

The assumption for the underlying movement representa-
tion is that it is sufficient that the robot’s movement passes
through certain points to achieve a certain task under various
constraints. Thus, the full movement of the robot is described
by these important points, which we call via-points. The
problem of generating feasible robot motions then reduces
to finding the parameters of these via-points.

A. Via-points formulation

When controlling robots, it is often desired to generate
smooth and continuous motions. For this, minimizing jerk
has been proven to be a suitable criterion [19]. Thus, in
this work, the robot’s joint angle trajectory is expressed by a
minimum-jerk trajectory that has to pass through certain via-
points. If the number of via-points is m, the state of the via-
points is defined as a vector of joint angles qvia,i and angular

velocities q̇via,i at the time tvia,i (for i = 1, · · · ,m). The joint
space trajectory generated with m via-points is denoted as the
vector-valued function qm(t). For tvia,1 < · · · , < tvia,m, the
joint space trajectory has to satisfy the following conditions:

qm(tvia,1)− qvia,1
q̇m(tvia,1)− q̇via,1
:::::::::::::::

...
qm(tvia,m)− qvia,m
q̇m(tvia,m)− q̇via,m
:::::::::::::::::


= 0 . (1)

Using the Lagrange multipliers πi and λi (for
i = 1, · · · ,m), we can formulate the minimum jerk trajec-
tory with m via-points. The derivations of the equations are
described in detail in [14] and left out here for brevity. The
minimum jerk trajectory is defined as:

qm(t) =
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(2)

where tf is the overall movement time, which we assume is
appropriately given as a multiple of the sampling time ∆t.
If the number of degrees of freedom of the robot is n,
each coefficient vector of the polynomial has n dimensions,
respectively.

For the initialization algorithm 1, later described in Sec-
tion III, we additionally use another formulation without joint
velocities. The formulas can be easily obtained by leaving
out the underlined terms in Eqs. (1) and (2).

The polynomial in Eq. (2) has n(2m + 6) coefficients.
We can determine the coefficients using the 6n conditions
of the initial and final state and the 2mn conditions of
joint angle and angular velocity at the via-points (Eq. (1)).
Since we set the current state of the robot as the initial
state and velocity and acceleration at the final state as zero,
the motion planning problem is to determine the n(2m+ 1)
conditions to fully describe a qm(t) that achieves the de-
sired motion task. Before this however it is required to
determine the appropriate number of via-points m and their
timings tvia = [tvia,1 · · · tvia,m].

B. Problem definition

The motion planning framework using via-points is com-
posed of two phases: initialization and optimization. In the
initialization phase, the appropriate values of m and tvia are
automatically decided and the via-point parameters are ini-
tialized for efficient optimization. Then in the second phase,
the coefficients of the min-jerk polynomial are optimized for



satisfying certain constraints. The set of parameters to be
optimized are described as Xopt:

Xopt =
[
Qvia Q̇via qf

]
Qvia = [qvia,1 · · · qvia,m] (3)

Q̇via = [q̇via,1 · · · q̇via,m] ,

where qf is the joint angle vector at the final state.
In this paper, we apply constrained optimization for plan-

ning safe robot motions. There are a number of constraints
that have to be satisfied throughout the movement. They are
considered in terms of inequality constraints for collision
avoidance (including self-collisions) and joint range limits.
To obtain the collision cost ccol(q), we define a collision
model using rigid primitive shapes such as capsules or
spheres. Their positions and orientations are fully described
by the given joint angles q. The value of ccol(q) is then
calculated based on the closest point distance between spe-
cific collision pairs. For a detailed description about the
calculations of the collision cost and its gradient see our
earlier work [1]. Also described there is the cost for avoiding
joint range limitations cjoint(q) which is expressed as the
weighted squared sum of deviations between the current joint
angle and the joint’s center position. In addition to these
inequality constraints, the conditions for target achievement
in task space, such as reaching a certain position with the
end-effector, are represented as equality constraints.

III. INITIALIZATION

We propose an initialization method that finds the number
of via-points considering the complexity of the task. The
initialization method is composed of two steps. First, a
feasible joint space trajectory is found using sampling-based
motion planning. Then, we incrementally add new via-points
along the planned path until a feasible or close-to-feasible
trajectory is found. The result is the number of via-points
m, their timings and a set of via-point parameters Xini that
are used as initialization for the subsequent optimization in
Section IV.

A. Path planning

At first, path planning is used to find a valid sequence
of joint space states between the initial posture qs and
final posture qf. While qs is assumed to be the robot’s
current posture, a posture qf has to be found that satisfies
the target constraints such as reaching with the end-effector
for a certain task space position. To get qf we iteratively
apply inverse kinematics from random initial postures until
a valid posture has been found. Once the two postures are
known, we apply sampling-based path planning in form of
RRT-CONNECT [20]. Once the method finds a solution, it
returns a sequence of valid joint space states whose distances
are below a certain threshold and which connect start and
final state. These states are then re-interpolated to obtain a
sequence Qpp = [qpp

1 · · · q
pp
T ] with T = (tf/∆t + 1) valid

joint space states. These states serve as possible candidates

Algorithm 1 Initialization and task-dependent distribution of
via-points
Output:
m: number of via-points
tvia = [tvia,1 · · · tvia,m]: via-point timings
Qvia: joint angles at the via-points
Q̇via: joint angular velocities at the via-points
Xini: initial parameters for optimization

Variables:
i: timestep
∆t: sampling time
T : total number of timesteps
qs, qf: joint angles at the initial and final state
qm(t): minimum jerk trajectory with m via-points
Qpp = [qpp

1 · · · q
pp
T ]: path planning trajectory

Q∗via: temporary via-points
Cini(m): initialization cost (either Eq. (4) or (5))
Ceval = [Ceval

1 · · ·Ceval
T ] : evaluation vector

tol: tolerance
Algorithm:
m⇐ 0
qs, qf ⇐ qpp

1 , qpp
T

while Cini(m) > tol do
m⇐ m+ 1
for i = 1, i ≤ T do
Q∗via ⇐

[
Qvia q

pp
i

]
Ceval

i = Cini(m) for Q∗via w/o vel. (Eq. (2) w/o
:
· )

end for
i ⇐ arg mini∈[1,T ]

(
Ceval

)
tvia ⇐ [tvia i ·∆t]
sort tvia ascending
for j = 1, j ≤ m do
Qvia ⇐

[
Qvia q

pp
k

]
with k =

(
tvia,j/∆t+ 1

)
end for
Q̇via ⇐ arg min

(
Cini(m)

)
end while
keep m, tvia

Xini ⇐
[
Qvia Q̇via qf

]

for the timing and the position of the via-points in the second
initialization step.

B. Distribution of via-points

In the second step, we determine the via-points using the
result of the path planningQpp. The method to find the initial
via-point parameters Xini is described in Alg. 1. The idea
behind the algorithm is to incrementally add via-points at
positions of the initial path that minimize, what we call, the
initialization cost.

As initialization cost, we investigated two different cost
functions: Cini1 and Cini2. The strategy pursued with the first
initialization cost is to find a minimal number of via-points
with which the planned path Qpp can be matched. Since
the path planning result already considers the constraint
conditions, an initial joint trajectory qm(t) is also assumed
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Fig. 1. Conceptual sketch for single and sequential optimization. Axes q1 and q2 are assumed to be via-point parameters. C1 and C2 are the local minima
in each feasible (i. e., constraints are fulfilled) area a1 and a2. Applying only constrained optimization (a) from the initialization Xini cannot traverse to
the feasible area a1 which contains the smaller local minimum C1. In contrast, when applying the sequential optimization (b), the first optimization step
can move towards the better local minimum, which allows the constrained optimization to reach it.

to be feasible by closely following Qpp. The cost function
Cini1 is expressed as

Cini1(m) =

T∑
i=1

∥∥qm(i ·∆t)− qpp
i

∥∥
2

. (4)

It is guaranteed that cost function Cini1 converges to zero
because in the limit every point qm(i ·∆t) is associated to a
via-point, which is initialized to qpp

i . However typically the
cost decreases below a reasonable threshold with much fewer
via-points (see Table I).

The other initialization cost function Cini2 is minimizing
both, the collision cost ccol(q) and the joint limit cost
cjoint(q):

Cini2(m) =

T∑
i=1

(
ccol
(
qm(i ·∆t)

)
+ cjoint

(
qm(i ·∆t)

))
.

(5)
The second method usually generates a trajectory which

is qualitatively different from the path planning trajectory
and only shares the positions and timings of the via-points.
However, the initial trajectory qm(t) also becomes a feasible
trajectory when adding enough via-points, because of the
consideration of the constraints in cost Cini2.

The proposed algorithm using either of the two initializa-
tion cost functions decides for an appropriate number of via-
points according to the complexity of the task. On the one
hand, if the situation is easy, using only one via-point might
already be sufficient, which leads to a faster optimization
in the next step. On the other hand, in a complex situation
with for example many obstacles, the method adds more via-
points until a valid initial solution is found. This then gives
the subsequent optimization additional free parameters and
thus the possibility to find a better solution.

IV. SEQUENTIAL OPTIMIZATION

For the optimization described in this section, the number
of via-points and their timings as a result from the initial-
ization are fixed. Only the parameters Xini are optimized
using local gradient-based constrained optimization. Fig. 1
illustrates a conceptual sketch for the sequential optimization

(a) Robot arm scenario 1 (b) Robot arm scenario 2

(c) Humanoid scenario 1 (d) Humanoid scenario 2

target

target 
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(right hand)
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Fig. 2. The four scenarios with the two different robots: 7-DOF robot arm
and 16-DOF humanoid upper body.

approach consisting of two steps. The first step is an opti-
mization that has no hard inequality constraints, but instead
includes them in the cost to be minimized:

Xopt1 = arg min
Xopt

(
Copt + ω ‖Cieq‖1

)
s.t. Ceq = 0 , (6)

with ω being a weighting factor.

The cost function to be minimized is Copt and the inequal-
ity and equality constraints are described as Cieq and Ceq,
respectively. The second optimization, which is initialized
with results from the first optimization Xopt1, incorporates
Cieq as a hard inequality constraint:

Xopt2 = arg min
Xopt

Copt

s.t. Cieq ≤ 0, Ceq = 0 . (7)



TABLE I
SIMULATION RESULTS OF THE MOTION PLANNING FRAMEWORK USING VIA-POINTS (AVERAGE ± STD)

Task-dependent distribution of via-points and sequential optimization
Initialization cost: Eq. (4) Initialization cost: Eq. (5)

tol: 0.2 (robot arm), 20 (humanoid) tol: 20 (both robots)
Success Number of Cost Calc. time Success Number of Cost Calc. time

[%] via-points [s] [%] via-points [s]
Robot arm 100 2.30 0.026 7.09 100 1.05 0.037 4.51
scenario 1 ± 1.60 ± 0.024 ± 7.48 ± 0.21 ± 0.033 ± 2.82
Robot arm 98 2.71 0.061 11.17 100 1.06 0.058 7.18
scenario 2 ± 1.24 ± 0.039 ± 8.29 ± 0.24 ± 0.041 ± 3.61
Humanoid 96 5.52 0.32 89.12 98 1.74 0.35 28.41
scenario 1 ± 2.74 ± 0.062 ± 85.36 ± 0.60 ± 0.14 ± 9.65
Humanoid 98 3.86 0.14 96.77 100 2.04 0.14 53.40
scenario 2 ± 1.65 ± 0.020 ± 122.95 ± 0.78 ± 0.022 ± 24.20

The intention behind splitting the optimization into two
steps is to obtain a better solution in terms of minimiz-
ing Copt. Especially for tasks with higher complexity (higher
number of DOF and narrow environment), there are many
local minima (e. g., C1 and C2 in Fig. 1). If the constraint
conditions would be included already from the beginning, the
potentially better minimum C1 cannot be reached, because
the optimization is restricted to remain in the feasible area a2,
as shown in Fig. 1a. Instead, when applying two optimization
steps as described above, optimization 1 is able to move
among the feasible areas towards a better minimum (from
area a2 to area a1 in Fig. 1b). The inequality constraint
conditions are still considered by being part of the cost
function (as soft constraints). The subsequent optimization
then solves the optimization problem with the inequality
constraint conditions (as hard constraints). As a result, the
solution can potentially reach a cost value C1 which is
lower than C2. The quantification of this result is part of
the evaluation in Section V.

A. Cost function and constraints

The cost function to be minimized is the length of the
joint space trajectory qm(t) of the robot:

Copt =
1

2

T∑
i=2

∥∥∥qm(i ·∆t)− qm
(
(i− 1) ·∆t

)∥∥∥
2

. (8)

Additionally, the inequality constraint function deals with
the collision cost ccol and the joint limit cost cjoint over the
whole motion duration:

Cieq =

[ ∑T
i=1 ccol

(
qm(i ·∆t)

)∑T
i=1 cjoint

(
qm(i ·∆t)

) ] ≤ 0 . (9)

Finally, the equality constraint function includes the con-
ditions for achieving a certain target in task space at the final
state:

Ceq =
[
p(T )− pdes

]
= 0 , (10)

where p(T ) is a function using forward kinematics for
calculating the state of the task space at the final timestep T .

Vector pdes is the given desired target in task space and can
be composed of an arbitrary combination of tasks, such as
desired positions or orientations of different bodies. In the
experiments in the next section pdes is composed of the 3D
positions of the end-effectors in world coordinates.

B. Gradient computation
For solving the optimization problem, a gradient-based

approach can be used efficiently, because all gradients are
available in their analytic form. They are explained here us-
ing the general form of a cost function C. The gradients with
respect to the via-point parameters Xopt can be expressed as
follows:

dC
dXopt

=

T∑
i=1

(
∂C

∂qm(i ·∆t)
· dqm(i ·∆t)

dXopt

)
(11)

C 3 {Copt,Cieq,Ceq} .

Since the joint angle trajectory is formulated as a fifth-
order polynomial function, we can analytically derive the
second term dqm(i ·∆t)/dXopt which then also becomes a
function of a fifth-order polynomial. For the gradients of the
equality constraints Ceq, it becomes the Jacobian matrix of
the tasks. The derivation of all other gradients of the cost
functions is straightforward, as they are formulated in terms
of quadratic cost functions.

V. RESULTS
We applied our method to generating reaching movements

for a 7-DOF robot arm and bi-manual reaching motions for
a humanoid upper body with 16 DOF (each arm has 7 DOF
and the waist has 2 DOF). Fig. 2 shows the four different
scenarios for the two different robots in simulation. For
each robot, an easy and a comparably harder reaching task
have been evaluated. The movement duration has been set
to 10 s and 7 s for the robot arm and the humanoid model,
respectively.

A. Simulation results
The computer used for the simulation was an Intel(R)

Core(TM) i5-2400 CPU (3.10 GHz, 8 GB RAM) running



TABLE II
SIMULATION RESULTS OF MOTION PLANNING USING THE PREVIOUS INITIALIZATION METHOD (AVERAGE ± STD)

Initialization from straight-line trajectory and sequential optimization
Number of via-points: 1 Number of via-points: 3 Number of via-points: 5

Success Cost Calc. time Success Cost Calc. time Success Cost Calc. time
[%] [s] [%] [s] [%] [s]

Robot arm 96 0.035 3.31 100 0.028 5.51 100 0.035 5.65
scenario 1 ± 0.048 ± 1.65 ± 0.031 ± 2.84 ± 0.041 ± 2.58
Robot arm 80 0.062 6.74 80 0.061 8.09 84 0.054 11.87
scenario 2 ± 0.48 ± 3.12 ± 0.035 ± 4.10 ± 0.043 ± 7.85
Humanoid 40 0.31 19.47 24 0.28 44.50 12 0.27 92.06
scenario 1 ± 0.024 ± 7.03 ± 0.051 ± 25.27 ± 0.037 ± 38.70
Humanoid 4 0.15 31.42 0 - - 0 - -scenario 2 ± 0.001 ± 8.11

64 Bit Ubuntu Linux 12.04. In this work, the C/C++ li-
brary OMPL1 was used for path planning. Additionally, the
SLSQP function of the C/C++ library NLopt2 was used to
solve the SQP problem.

We simulated 50 trials for each scenario. Table I shows
the simulation results using our motion planning framework
with via-points. We evaluated the two proposed initialization
costs and the sequential optimization technique.

At first, it can be confirmed that our method has a high
success rate in all scenarios. Even for the difficult scenarios,
the system could plan the motions with almost no failure. It
can also be confirmed that the number of via-points increases
with the complexity of the task. As the table shows, also the
computation time increases together with the higher number
of via-points. However, the resulting cost values do not rely
on the type of initialization cost. When the initialization cost
of Eq. (4) is used, a higher number of via-points is selected.
This is because the initially planned path is not very short
and it is necessary to distribute more via-points to reproduce
the path. As a consequence, when using path planning, the
cost formulation of Eq. (5) should be preferred over Eq. (4).
However, we see potential for the criterion of Eq. (4) for
example for imitation learning scenarios [21]. In this case,
the path planning trajectory could be replaced by a trajectory
demonstrated by the human tutor and it might be preferable
to have the initial minimum jerk trajectory closer to the
demonstrated path.

The resulting motion of the simulated scenarios is pro-
vided as a supplementary video. It can be seen, that even if
the results of the path planning are not short and smooth,
the via-point formulation and the optimization can generate
a short motion with a guaranteed minimal jerk.

B. Comparison with previous initialization method

We compared the proposed initialization method with
the previous method of using a straight-line trajectory that
connects start and end poses. As the previous method does
not determine the number of via-points automatically, we

1http://ompl.kavrakilab.org
2http://ab-initio.mit.edu/nlopt

evaluated three different fixed numbers of via-points (i. e.,
one, three and five). The via-points where distribute equally
in time along the initial straight path. Table II shows the
motion planning results using the previous initialization
together with sequential optimization.

It can be confirmed that the success rate deteriorated
with increasing task complexity. Especially, in the humanoid
scenario 2, it was almost impossible to plan the motion using
the previous method. It can also be seen (robot arm scenario
2 and humanoid scenario 1) that increasing the number of
via-points does not necessarily improve the performance.
This indicates that it is very important to determine the
appropriate timings of the via-points in addition to the
number of via-points wrt. the task complexity. In contrast to
the previous initialization method, this selection of feasible
timings is achieved by the proposed method.

C. Comparison with single optimization

In this section, we compare the sequential optimization
with single optimization. Table III shows the simulation re-
sults of the motion planning using the proposed initialization
method but with a single constrained optimization. For this
comparison, the initialization cost from Eq. (5) was used. For
the robot arm scenarios, the resulting cost values are basically
the same and there is no difference between single and
sequential optimization. However, in the humanoid scenarios,
the single optimization yields a much higher cost value
(which means a longer movement in joint space). This result
indicates that the sequential optimization technique is able
to find a better local minimum for complex problems.

D. Robot experiments

The robot experiments based on the robot arm scenario 2
have been tested with a real robot. In this experiment, a
SCHUNK light-weight arm with 7 DOF was used and the
whole movement time was set to 15 s. Fig. 3 shows snapshots
of one part of the experiments. Different examples of this
experiment are also shown in the supplementary video. We
confirmed that the robot could reach the target in the box
under changing positions and orientations of the box and
with an additional obstacle in the scene. The movements of



TABLE III
SIMULATION RESULTS OF MOTION PLANNING USING SINGLE

OPTIMIZATION (AVERAGE ± STD)

Success Number of Cost Calc. time
[%] via-points [s]

Robot arm 100 1.02 0.037 2.61
scenario 1 ± 0.14 ± 0.040 ± 1.63
Robot arm 100 1.04 0.06 4.60
scenario 2 ± 0.20 ± 0.048 ± 2.72
Humanoid 40 1.85 0.82 13.78
scenario 1 ± 0.48 ± 1.51 ± 4.43
Humanoid 98 1.48 1.18 24.28
scenario 2 ± 0.77 ± 1.58 ± 29.12

1 2

3 4

Fig. 3. Snapshots of the real robot experiment.

the robot are guaranteed to be smooth due to the minimum
jerk formulation of the via-points.

VI. CONCLUSION

In this paper, we presented a motion planning framework
for planning smooth robot movements based on a minimum
jerk formulation using via-points. We proposed an initial-
ization method that provides a task-dependent distribution
of these via-points. Our initialization method finds an ap-
propriate number of via-points and their timing according
to the complexity of the task. Furthermore, we introduced a
sequential optimization technique that can potentially reach
a lower cost than constrained optimization alone. The op-
timization procedure finds optimal via-point parameters to
allow a robot to achieve a given task without violating con-
straints. Furthermore, the smoothness of the robot’s motion
is guaranteed due to the formulation based on a minimum
jerk criterion.

For future work two main topics remain. The computa-
tional cost to plan the motions is too high for applying the
framework to real-time motion control of robots with a large
number of DOF. Additionally, we would like to deal with
various kinds of constraint conditions such as keeping the
position or orientation of an end-effector constant during
parts of the motion. Thus in future, we intend to approach
the motion planning with via-points using different kinds of
constraint conditions.
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