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AbstractAbstract
This project aims at learning goal-directed movements by imitation

with a humanoid robot. The scope is limited to full-body

movements with 2 arms, suited for bimanual tasks. We target to

make a significant step from qualitative posture imitation towardsmake a significant step from qualitative posture imitation towards

capturing the essence of movements. We also see a close link

between imitation learning and action recognition, and think thatbetween imitation learning and action recognition, and think that

the project will bring us some steps into this direction.

Learning of task representations[1]Learning of task representations[1]

Basic ideaBasic idea
When learning from multiple demonstrations, a high inter-trial

variance stands for less important parts of a movement. By

allowing the robot to diverge from a learned movement in phasesallowing the robot to diverge from a learned movement in phases

of high inter-trial variance, it is able to fulfill additional criteria (e.g.

collision avoidance, center-of-gravity control, …).collision avoidance, center-of-gravity control, …).

Imitation learning frameworkImitation learning framework
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• The variance information over several task demonstrations is 

used as an importance measure. This information is used as an importance measure. This information is 

continuously incorporated into the movement generation 

process.process.

• Task spaces are used to model the observed movement task. 

This handles equally dimension reduction, generalization and This handles equally dimension reduction, generalization and 

the correspondence problem.

• The task learning is based on object trajectories only and no • The task learning is based on object trajectories only and no 

assumptions about the teacher’s or robot’s postures are made.

• To reproduce a learned movement, an attractor-based • To reproduce a learned movement, an attractor-based 

movement optimization scheme is utilized that also operates 

on task spaces.

Fig.: Movement generation exploits 

variance to avoid self-collision
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Selection of task spaces[2]Selection of task spaces[2]

• Problem: Which task space for representing a movement?
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… …
• The task space pool subsumes a set of possible task spaces to 

choose from

• The task space selector chooses task spaces suitable for the • The task space selector chooses task spaces suitable for the 

representation and/or adapts the reproduction

• Attention-based criterion• Attention-based criterion

• Reactive gazing behavior (the robot focuses the most salient object)

• Interactive task space selection (teacher receives direct feedback)

• Variance-based criterion• Variance-based criterion

• When comparing different task spaces, the one that yields the 

lowest inter-trial variance should be used for the representationlowest inter-trial variance should be used for the representation

• Euclidean Dynamic  Time Warping for comparing task spaces

• Kinetic criterion• Kinetic criterion

• Low inter-trial variance does not always imply a high task relevance

• Idea: Model-based approach to estimate internal states of the • Idea: Model-based approach to estimate internal states of the 

human demonstrator

• Uncomfortable and exhausting postures signalize task relevance, 

otherwise they would have been avoidedotherwise they would have been avoided
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